Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{\frac{a}{a-2}-\frac{4}{a\left(a-2\right)}}{\frac{a+2}{a}}
Factor a^{2}-2a.
\frac{\frac{aa}{a\left(a-2\right)}-\frac{4}{a\left(a-2\right)}}{\frac{a+2}{a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-2 and a\left(a-2\right) is a\left(a-2\right). Multiply \frac{a}{a-2} times \frac{a}{a}.
\frac{\frac{aa-4}{a\left(a-2\right)}}{\frac{a+2}{a}}
Since \frac{aa}{a\left(a-2\right)} and \frac{4}{a\left(a-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}-4}{a\left(a-2\right)}}{\frac{a+2}{a}}
Do the multiplications in aa-4.
\frac{\frac{\left(a-2\right)\left(a+2\right)}{a\left(a-2\right)}}{\frac{a+2}{a}}
Factor the expressions that are not already factored in \frac{a^{2}-4}{a\left(a-2\right)}.
\frac{\frac{a+2}{a}}{\frac{a+2}{a}}
Cancel out a-2 in both numerator and denominator.
\frac{\left(a+2\right)a}{a\left(a+2\right)}
Divide \frac{a+2}{a} by \frac{a+2}{a} by multiplying \frac{a+2}{a} by the reciprocal of \frac{a+2}{a}.
1
Cancel out a\left(a+2\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}