Evaluate
1-2a
Expand
1-2a
Share
Copied to clipboard
\frac{\frac{a}{a-1}+\frac{a-1}{a-1}}{1-\frac{a}{a-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a-1}{a-1}.
\frac{\frac{a+a-1}{a-1}}{1-\frac{a}{a-1}}
Since \frac{a}{a-1} and \frac{a-1}{a-1} have the same denominator, add them by adding their numerators.
\frac{\frac{2a-1}{a-1}}{1-\frac{a}{a-1}}
Combine like terms in a+a-1.
\frac{\frac{2a-1}{a-1}}{\frac{a-1}{a-1}-\frac{a}{a-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a-1}{a-1}.
\frac{\frac{2a-1}{a-1}}{\frac{a-1-a}{a-1}}
Since \frac{a-1}{a-1} and \frac{a}{a-1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2a-1}{a-1}}{\frac{-1}{a-1}}
Combine like terms in a-1-a.
\frac{\left(2a-1\right)\left(a-1\right)}{\left(a-1\right)\left(-1\right)}
Divide \frac{2a-1}{a-1} by \frac{-1}{a-1} by multiplying \frac{2a-1}{a-1} by the reciprocal of \frac{-1}{a-1}.
\frac{2a-1}{-1}
Cancel out a-1 in both numerator and denominator.
-2a-\left(-1\right)
Anything divided by -1 gives its opposite. To find the opposite of 2a-1, find the opposite of each term.
-2a+1
The opposite of -1 is 1.
\frac{\frac{a}{a-1}+\frac{a-1}{a-1}}{1-\frac{a}{a-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a-1}{a-1}.
\frac{\frac{a+a-1}{a-1}}{1-\frac{a}{a-1}}
Since \frac{a}{a-1} and \frac{a-1}{a-1} have the same denominator, add them by adding their numerators.
\frac{\frac{2a-1}{a-1}}{1-\frac{a}{a-1}}
Combine like terms in a+a-1.
\frac{\frac{2a-1}{a-1}}{\frac{a-1}{a-1}-\frac{a}{a-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a-1}{a-1}.
\frac{\frac{2a-1}{a-1}}{\frac{a-1-a}{a-1}}
Since \frac{a-1}{a-1} and \frac{a}{a-1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2a-1}{a-1}}{\frac{-1}{a-1}}
Combine like terms in a-1-a.
\frac{\left(2a-1\right)\left(a-1\right)}{\left(a-1\right)\left(-1\right)}
Divide \frac{2a-1}{a-1} by \frac{-1}{a-1} by multiplying \frac{2a-1}{a-1} by the reciprocal of \frac{-1}{a-1}.
\frac{2a-1}{-1}
Cancel out a-1 in both numerator and denominator.
-2a-\left(-1\right)
Anything divided by -1 gives its opposite. To find the opposite of 2a-1, find the opposite of each term.
-2a+1
The opposite of -1 is 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}