Evaluate
\frac{a}{2n-a}
Expand
\frac{a}{2n-a}
Share
Copied to clipboard
\left(\frac{a\times 2n}{2n\left(2n+a\right)}-\frac{\left(a+2n\right)\left(2n+a\right)}{2n\left(2n+a\right)}\right)\left(\frac{a}{a-2n}-1+\frac{8n^{3}}{8n^{3}-a^{3}}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2n and 2n is 2n\left(2n+a\right). Multiply \frac{a}{a+2n} times \frac{2n}{2n}. Multiply \frac{a+2n}{2n} times \frac{2n+a}{2n+a}.
\frac{a\times 2n-\left(a+2n\right)\left(2n+a\right)}{2n\left(2n+a\right)}\left(\frac{a}{a-2n}-1+\frac{8n^{3}}{8n^{3}-a^{3}}\right)
Since \frac{a\times 2n}{2n\left(2n+a\right)} and \frac{\left(a+2n\right)\left(2n+a\right)}{2n\left(2n+a\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a\times 2n-2an-a^{2}-4n^{2}-2an}{2n\left(2n+a\right)}\left(\frac{a}{a-2n}-1+\frac{8n^{3}}{8n^{3}-a^{3}}\right)
Do the multiplications in a\times 2n-\left(a+2n\right)\left(2n+a\right).
\frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)}\left(\frac{a}{a-2n}-1+\frac{8n^{3}}{8n^{3}-a^{3}}\right)
Combine like terms in a\times 2n-2an-a^{2}-4n^{2}-2an.
\frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)}\left(\frac{a}{a-2n}-\frac{a-2n}{a-2n}+\frac{8n^{3}}{8n^{3}-a^{3}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a-2n}{a-2n}.
\frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)}\left(\frac{a-\left(a-2n\right)}{a-2n}+\frac{8n^{3}}{8n^{3}-a^{3}}\right)
Since \frac{a}{a-2n} and \frac{a-2n}{a-2n} have the same denominator, subtract them by subtracting their numerators.
\frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)}\left(\frac{a-a+2n}{a-2n}+\frac{8n^{3}}{8n^{3}-a^{3}}\right)
Do the multiplications in a-\left(a-2n\right).
\frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)}\left(\frac{2n}{a-2n}+\frac{8n^{3}}{8n^{3}-a^{3}}\right)
Combine like terms in a-a+2n.
\frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)}\left(\frac{2n}{a-2n}+\frac{8n^{3}}{\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)}\right)
Factor 8n^{3}-a^{3}.
\frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)}\left(\frac{2n\left(-1\right)\left(4n^{2}+2an+a^{2}\right)}{\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)}+\frac{8n^{3}}{\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-2n and \left(2n-a\right)\left(4n^{2}+2an+a^{2}\right) is \left(2n-a\right)\left(4n^{2}+2an+a^{2}\right). Multiply \frac{2n}{a-2n} times \frac{-\left(4n^{2}+2an+a^{2}\right)}{-\left(4n^{2}+2an+a^{2}\right)}.
\frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)}\times \frac{2n\left(-1\right)\left(4n^{2}+2an+a^{2}\right)+8n^{3}}{\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)}
Since \frac{2n\left(-1\right)\left(4n^{2}+2an+a^{2}\right)}{\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)} and \frac{8n^{3}}{\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)} have the same denominator, add them by adding their numerators.
\frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)}\times \frac{-8n^{3}-4n^{2}a-2na^{2}+8n^{3}}{\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)}
Do the multiplications in 2n\left(-1\right)\left(4n^{2}+2an+a^{2}\right)+8n^{3}.
\frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)}\times \frac{-2na^{2}-4n^{2}a}{\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)}
Combine like terms in -8n^{3}-4n^{2}a-2na^{2}+8n^{3}.
\frac{\left(-4n^{2}-2an-a^{2}\right)\left(-2na^{2}-4n^{2}a\right)}{2n\left(2n+a\right)\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)}
Multiply \frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)} times \frac{-2na^{2}-4n^{2}a}{\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(4n^{2}+2an+a^{2}\right)\left(-4an^{2}-2na^{2}\right)}{2n\left(2n+a\right)\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)}
Extract the negative sign in -4n^{2}-2an-a^{2}.
\frac{-\left(-4an^{2}-2na^{2}\right)}{2n\left(2n+a\right)\left(2n-a\right)}
Cancel out 4n^{2}+2an+a^{2} in both numerator and denominator.
\frac{-2an\left(-2n-a\right)}{2n\left(2n+a\right)\left(2n-a\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\times 2an\left(2n+a\right)}{2n\left(2n+a\right)\left(2n-a\right)}
Extract the negative sign in -2n-a.
\frac{-\left(-1\right)a}{2n-a}
Cancel out 2n\left(2n+a\right) in both numerator and denominator.
\frac{a}{2n-a}
Expand the expression.
\left(\frac{a\times 2n}{2n\left(2n+a\right)}-\frac{\left(a+2n\right)\left(2n+a\right)}{2n\left(2n+a\right)}\right)\left(\frac{a}{a-2n}-1+\frac{8n^{3}}{8n^{3}-a^{3}}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2n and 2n is 2n\left(2n+a\right). Multiply \frac{a}{a+2n} times \frac{2n}{2n}. Multiply \frac{a+2n}{2n} times \frac{2n+a}{2n+a}.
\frac{a\times 2n-\left(a+2n\right)\left(2n+a\right)}{2n\left(2n+a\right)}\left(\frac{a}{a-2n}-1+\frac{8n^{3}}{8n^{3}-a^{3}}\right)
Since \frac{a\times 2n}{2n\left(2n+a\right)} and \frac{\left(a+2n\right)\left(2n+a\right)}{2n\left(2n+a\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a\times 2n-2an-a^{2}-4n^{2}-2an}{2n\left(2n+a\right)}\left(\frac{a}{a-2n}-1+\frac{8n^{3}}{8n^{3}-a^{3}}\right)
Do the multiplications in a\times 2n-\left(a+2n\right)\left(2n+a\right).
\frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)}\left(\frac{a}{a-2n}-1+\frac{8n^{3}}{8n^{3}-a^{3}}\right)
Combine like terms in a\times 2n-2an-a^{2}-4n^{2}-2an.
\frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)}\left(\frac{a}{a-2n}-\frac{a-2n}{a-2n}+\frac{8n^{3}}{8n^{3}-a^{3}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a-2n}{a-2n}.
\frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)}\left(\frac{a-\left(a-2n\right)}{a-2n}+\frac{8n^{3}}{8n^{3}-a^{3}}\right)
Since \frac{a}{a-2n} and \frac{a-2n}{a-2n} have the same denominator, subtract them by subtracting their numerators.
\frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)}\left(\frac{a-a+2n}{a-2n}+\frac{8n^{3}}{8n^{3}-a^{3}}\right)
Do the multiplications in a-\left(a-2n\right).
\frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)}\left(\frac{2n}{a-2n}+\frac{8n^{3}}{8n^{3}-a^{3}}\right)
Combine like terms in a-a+2n.
\frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)}\left(\frac{2n}{a-2n}+\frac{8n^{3}}{\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)}\right)
Factor 8n^{3}-a^{3}.
\frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)}\left(\frac{2n\left(-1\right)\left(4n^{2}+2an+a^{2}\right)}{\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)}+\frac{8n^{3}}{\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-2n and \left(2n-a\right)\left(4n^{2}+2an+a^{2}\right) is \left(2n-a\right)\left(4n^{2}+2an+a^{2}\right). Multiply \frac{2n}{a-2n} times \frac{-\left(4n^{2}+2an+a^{2}\right)}{-\left(4n^{2}+2an+a^{2}\right)}.
\frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)}\times \frac{2n\left(-1\right)\left(4n^{2}+2an+a^{2}\right)+8n^{3}}{\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)}
Since \frac{2n\left(-1\right)\left(4n^{2}+2an+a^{2}\right)}{\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)} and \frac{8n^{3}}{\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)} have the same denominator, add them by adding their numerators.
\frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)}\times \frac{-8n^{3}-4n^{2}a-2na^{2}+8n^{3}}{\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)}
Do the multiplications in 2n\left(-1\right)\left(4n^{2}+2an+a^{2}\right)+8n^{3}.
\frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)}\times \frac{-2na^{2}-4n^{2}a}{\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)}
Combine like terms in -8n^{3}-4n^{2}a-2na^{2}+8n^{3}.
\frac{\left(-4n^{2}-2an-a^{2}\right)\left(-2na^{2}-4n^{2}a\right)}{2n\left(2n+a\right)\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)}
Multiply \frac{-4n^{2}-2an-a^{2}}{2n\left(2n+a\right)} times \frac{-2na^{2}-4n^{2}a}{\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(4n^{2}+2an+a^{2}\right)\left(-4an^{2}-2na^{2}\right)}{2n\left(2n+a\right)\left(2n-a\right)\left(4n^{2}+2an+a^{2}\right)}
Extract the negative sign in -4n^{2}-2an-a^{2}.
\frac{-\left(-4an^{2}-2na^{2}\right)}{2n\left(2n+a\right)\left(2n-a\right)}
Cancel out 4n^{2}+2an+a^{2} in both numerator and denominator.
\frac{-2an\left(-2n-a\right)}{2n\left(2n+a\right)\left(2n-a\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\times 2an\left(2n+a\right)}{2n\left(2n+a\right)\left(2n-a\right)}
Extract the negative sign in -2n-a.
\frac{-\left(-1\right)a}{2n-a}
Cancel out 2n\left(2n+a\right) in both numerator and denominator.
\frac{a}{2n-a}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}