Evaluate
\frac{27-45a+27a^{2}-a^{3}}{3a\left(a-1\right)\left(9-a^{2}\right)}
Expand
\frac{a^{3}-27a^{2}+45a-27}{3a\left(a-1\right)\left(a^{2}-9\right)}
Share
Copied to clipboard
\frac{a}{3\left(a-1\right)}-\frac{3}{a\left(a+3\right)}+\frac{a^{2}+9}{27-3a^{2}}
Factor 3a-3. Factor a^{2}+3a.
\frac{aa\left(a+3\right)}{3a\left(a-1\right)\left(a+3\right)}-\frac{3\times 3\left(a-1\right)}{3a\left(a-1\right)\left(a+3\right)}+\frac{a^{2}+9}{27-3a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(a-1\right) and a\left(a+3\right) is 3a\left(a-1\right)\left(a+3\right). Multiply \frac{a}{3\left(a-1\right)} times \frac{a\left(a+3\right)}{a\left(a+3\right)}. Multiply \frac{3}{a\left(a+3\right)} times \frac{3\left(a-1\right)}{3\left(a-1\right)}.
\frac{aa\left(a+3\right)-3\times 3\left(a-1\right)}{3a\left(a-1\right)\left(a+3\right)}+\frac{a^{2}+9}{27-3a^{2}}
Since \frac{aa\left(a+3\right)}{3a\left(a-1\right)\left(a+3\right)} and \frac{3\times 3\left(a-1\right)}{3a\left(a-1\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{3}+3a^{2}-9a+9}{3a\left(a-1\right)\left(a+3\right)}+\frac{a^{2}+9}{27-3a^{2}}
Do the multiplications in aa\left(a+3\right)-3\times 3\left(a-1\right).
\frac{a^{3}+3a^{2}-9a+9}{3a\left(a-1\right)\left(a+3\right)}+\frac{a^{2}+9}{3\left(a-3\right)\left(-a-3\right)}
Factor 27-3a^{2}.
\frac{\left(a^{3}+3a^{2}-9a+9\right)\left(a-3\right)}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)}+\frac{\left(a^{2}+9\right)\left(-1\right)a\left(a-1\right)}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3a\left(a-1\right)\left(a+3\right) and 3\left(a-3\right)\left(-a-3\right) is 3a\left(a-3\right)\left(a-1\right)\left(a+3\right). Multiply \frac{a^{3}+3a^{2}-9a+9}{3a\left(a-1\right)\left(a+3\right)} times \frac{a-3}{a-3}. Multiply \frac{a^{2}+9}{3\left(a-3\right)\left(-a-3\right)} times \frac{-a\left(a-1\right)}{-a\left(a-1\right)}.
\frac{\left(a^{3}+3a^{2}-9a+9\right)\left(a-3\right)+\left(a^{2}+9\right)\left(-1\right)a\left(a-1\right)}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)}
Since \frac{\left(a^{3}+3a^{2}-9a+9\right)\left(a-3\right)}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)} and \frac{\left(a^{2}+9\right)\left(-1\right)a\left(a-1\right)}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{a^{4}-3a^{3}+3a^{3}-9a^{2}-9a^{2}+27a+9a-27-a^{4}+a^{3}-9a^{2}+9a}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)}
Do the multiplications in \left(a^{3}+3a^{2}-9a+9\right)\left(a-3\right)+\left(a^{2}+9\right)\left(-1\right)a\left(a-1\right).
\frac{a^{3}-27a^{2}+45a-27}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)}
Combine like terms in a^{4}-3a^{3}+3a^{3}-9a^{2}-9a^{2}+27a+9a-27-a^{4}+a^{3}-9a^{2}+9a.
\frac{a^{3}-27a^{2}+45a-27}{3a^{4}-3a^{3}-27a^{2}+27a}
Expand 3a\left(a-3\right)\left(a-1\right)\left(a+3\right).
\frac{a}{3\left(a-1\right)}-\frac{3}{a\left(a+3\right)}+\frac{a^{2}+9}{27-3a^{2}}
Factor 3a-3. Factor a^{2}+3a.
\frac{aa\left(a+3\right)}{3a\left(a-1\right)\left(a+3\right)}-\frac{3\times 3\left(a-1\right)}{3a\left(a-1\right)\left(a+3\right)}+\frac{a^{2}+9}{27-3a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(a-1\right) and a\left(a+3\right) is 3a\left(a-1\right)\left(a+3\right). Multiply \frac{a}{3\left(a-1\right)} times \frac{a\left(a+3\right)}{a\left(a+3\right)}. Multiply \frac{3}{a\left(a+3\right)} times \frac{3\left(a-1\right)}{3\left(a-1\right)}.
\frac{aa\left(a+3\right)-3\times 3\left(a-1\right)}{3a\left(a-1\right)\left(a+3\right)}+\frac{a^{2}+9}{27-3a^{2}}
Since \frac{aa\left(a+3\right)}{3a\left(a-1\right)\left(a+3\right)} and \frac{3\times 3\left(a-1\right)}{3a\left(a-1\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{3}+3a^{2}-9a+9}{3a\left(a-1\right)\left(a+3\right)}+\frac{a^{2}+9}{27-3a^{2}}
Do the multiplications in aa\left(a+3\right)-3\times 3\left(a-1\right).
\frac{a^{3}+3a^{2}-9a+9}{3a\left(a-1\right)\left(a+3\right)}+\frac{a^{2}+9}{3\left(a-3\right)\left(-a-3\right)}
Factor 27-3a^{2}.
\frac{\left(a^{3}+3a^{2}-9a+9\right)\left(a-3\right)}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)}+\frac{\left(a^{2}+9\right)\left(-1\right)a\left(a-1\right)}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3a\left(a-1\right)\left(a+3\right) and 3\left(a-3\right)\left(-a-3\right) is 3a\left(a-3\right)\left(a-1\right)\left(a+3\right). Multiply \frac{a^{3}+3a^{2}-9a+9}{3a\left(a-1\right)\left(a+3\right)} times \frac{a-3}{a-3}. Multiply \frac{a^{2}+9}{3\left(a-3\right)\left(-a-3\right)} times \frac{-a\left(a-1\right)}{-a\left(a-1\right)}.
\frac{\left(a^{3}+3a^{2}-9a+9\right)\left(a-3\right)+\left(a^{2}+9\right)\left(-1\right)a\left(a-1\right)}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)}
Since \frac{\left(a^{3}+3a^{2}-9a+9\right)\left(a-3\right)}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)} and \frac{\left(a^{2}+9\right)\left(-1\right)a\left(a-1\right)}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{a^{4}-3a^{3}+3a^{3}-9a^{2}-9a^{2}+27a+9a-27-a^{4}+a^{3}-9a^{2}+9a}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)}
Do the multiplications in \left(a^{3}+3a^{2}-9a+9\right)\left(a-3\right)+\left(a^{2}+9\right)\left(-1\right)a\left(a-1\right).
\frac{a^{3}-27a^{2}+45a-27}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)}
Combine like terms in a^{4}-3a^{3}+3a^{3}-9a^{2}-9a^{2}+27a+9a-27-a^{4}+a^{3}-9a^{2}+9a.
\frac{a^{3}-27a^{2}+45a-27}{3a^{4}-3a^{3}-27a^{2}+27a}
Expand 3a\left(a-3\right)\left(a-1\right)\left(a+3\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}