Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a}{3\left(a-1\right)}-\frac{3}{a\left(a+3\right)}+\frac{a^{2}+9}{27-3a^{2}}
Factor 3a-3. Factor a^{2}+3a.
\frac{aa\left(a+3\right)}{3a\left(a-1\right)\left(a+3\right)}-\frac{3\times 3\left(a-1\right)}{3a\left(a-1\right)\left(a+3\right)}+\frac{a^{2}+9}{27-3a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(a-1\right) and a\left(a+3\right) is 3a\left(a-1\right)\left(a+3\right). Multiply \frac{a}{3\left(a-1\right)} times \frac{a\left(a+3\right)}{a\left(a+3\right)}. Multiply \frac{3}{a\left(a+3\right)} times \frac{3\left(a-1\right)}{3\left(a-1\right)}.
\frac{aa\left(a+3\right)-3\times 3\left(a-1\right)}{3a\left(a-1\right)\left(a+3\right)}+\frac{a^{2}+9}{27-3a^{2}}
Since \frac{aa\left(a+3\right)}{3a\left(a-1\right)\left(a+3\right)} and \frac{3\times 3\left(a-1\right)}{3a\left(a-1\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{3}+3a^{2}-9a+9}{3a\left(a-1\right)\left(a+3\right)}+\frac{a^{2}+9}{27-3a^{2}}
Do the multiplications in aa\left(a+3\right)-3\times 3\left(a-1\right).
\frac{a^{3}+3a^{2}-9a+9}{3a\left(a-1\right)\left(a+3\right)}+\frac{a^{2}+9}{3\left(a-3\right)\left(-a-3\right)}
Factor 27-3a^{2}.
\frac{\left(a^{3}+3a^{2}-9a+9\right)\left(a-3\right)}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)}+\frac{\left(a^{2}+9\right)\left(-1\right)a\left(a-1\right)}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3a\left(a-1\right)\left(a+3\right) and 3\left(a-3\right)\left(-a-3\right) is 3a\left(a-3\right)\left(a-1\right)\left(a+3\right). Multiply \frac{a^{3}+3a^{2}-9a+9}{3a\left(a-1\right)\left(a+3\right)} times \frac{a-3}{a-3}. Multiply \frac{a^{2}+9}{3\left(a-3\right)\left(-a-3\right)} times \frac{-a\left(a-1\right)}{-a\left(a-1\right)}.
\frac{\left(a^{3}+3a^{2}-9a+9\right)\left(a-3\right)+\left(a^{2}+9\right)\left(-1\right)a\left(a-1\right)}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)}
Since \frac{\left(a^{3}+3a^{2}-9a+9\right)\left(a-3\right)}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)} and \frac{\left(a^{2}+9\right)\left(-1\right)a\left(a-1\right)}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{a^{4}-3a^{3}+3a^{3}-9a^{2}-9a^{2}+27a+9a-27-a^{4}+a^{3}-9a^{2}+9a}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)}
Do the multiplications in \left(a^{3}+3a^{2}-9a+9\right)\left(a-3\right)+\left(a^{2}+9\right)\left(-1\right)a\left(a-1\right).
\frac{a^{3}-27a^{2}+45a-27}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)}
Combine like terms in a^{4}-3a^{3}+3a^{3}-9a^{2}-9a^{2}+27a+9a-27-a^{4}+a^{3}-9a^{2}+9a.
\frac{a^{3}-27a^{2}+45a-27}{3a^{4}-3a^{3}-27a^{2}+27a}
Expand 3a\left(a-3\right)\left(a-1\right)\left(a+3\right).
\frac{a}{3\left(a-1\right)}-\frac{3}{a\left(a+3\right)}+\frac{a^{2}+9}{27-3a^{2}}
Factor 3a-3. Factor a^{2}+3a.
\frac{aa\left(a+3\right)}{3a\left(a-1\right)\left(a+3\right)}-\frac{3\times 3\left(a-1\right)}{3a\left(a-1\right)\left(a+3\right)}+\frac{a^{2}+9}{27-3a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(a-1\right) and a\left(a+3\right) is 3a\left(a-1\right)\left(a+3\right). Multiply \frac{a}{3\left(a-1\right)} times \frac{a\left(a+3\right)}{a\left(a+3\right)}. Multiply \frac{3}{a\left(a+3\right)} times \frac{3\left(a-1\right)}{3\left(a-1\right)}.
\frac{aa\left(a+3\right)-3\times 3\left(a-1\right)}{3a\left(a-1\right)\left(a+3\right)}+\frac{a^{2}+9}{27-3a^{2}}
Since \frac{aa\left(a+3\right)}{3a\left(a-1\right)\left(a+3\right)} and \frac{3\times 3\left(a-1\right)}{3a\left(a-1\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{3}+3a^{2}-9a+9}{3a\left(a-1\right)\left(a+3\right)}+\frac{a^{2}+9}{27-3a^{2}}
Do the multiplications in aa\left(a+3\right)-3\times 3\left(a-1\right).
\frac{a^{3}+3a^{2}-9a+9}{3a\left(a-1\right)\left(a+3\right)}+\frac{a^{2}+9}{3\left(a-3\right)\left(-a-3\right)}
Factor 27-3a^{2}.
\frac{\left(a^{3}+3a^{2}-9a+9\right)\left(a-3\right)}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)}+\frac{\left(a^{2}+9\right)\left(-1\right)a\left(a-1\right)}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3a\left(a-1\right)\left(a+3\right) and 3\left(a-3\right)\left(-a-3\right) is 3a\left(a-3\right)\left(a-1\right)\left(a+3\right). Multiply \frac{a^{3}+3a^{2}-9a+9}{3a\left(a-1\right)\left(a+3\right)} times \frac{a-3}{a-3}. Multiply \frac{a^{2}+9}{3\left(a-3\right)\left(-a-3\right)} times \frac{-a\left(a-1\right)}{-a\left(a-1\right)}.
\frac{\left(a^{3}+3a^{2}-9a+9\right)\left(a-3\right)+\left(a^{2}+9\right)\left(-1\right)a\left(a-1\right)}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)}
Since \frac{\left(a^{3}+3a^{2}-9a+9\right)\left(a-3\right)}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)} and \frac{\left(a^{2}+9\right)\left(-1\right)a\left(a-1\right)}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{a^{4}-3a^{3}+3a^{3}-9a^{2}-9a^{2}+27a+9a-27-a^{4}+a^{3}-9a^{2}+9a}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)}
Do the multiplications in \left(a^{3}+3a^{2}-9a+9\right)\left(a-3\right)+\left(a^{2}+9\right)\left(-1\right)a\left(a-1\right).
\frac{a^{3}-27a^{2}+45a-27}{3a\left(a-3\right)\left(a-1\right)\left(a+3\right)}
Combine like terms in a^{4}-3a^{3}+3a^{3}-9a^{2}-9a^{2}+27a+9a-27-a^{4}+a^{3}-9a^{2}+9a.
\frac{a^{3}-27a^{2}+45a-27}{3a^{4}-3a^{3}-27a^{2}+27a}
Expand 3a\left(a-3\right)\left(a-1\right)\left(a+3\right).