Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{a^{3}}{\left(2b^{2}\right)^{3}}}{\left(\frac{3a}{b}\right)^{-2}}
To raise \frac{a}{2b^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{a^{3}}{\left(2b^{2}\right)^{3}}}{\frac{\left(3a\right)^{-2}}{b^{-2}}}
To raise \frac{3a}{b} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{3}b^{-2}}{\left(2b^{2}\right)^{3}\times \left(3a\right)^{-2}}
Divide \frac{a^{3}}{\left(2b^{2}\right)^{3}} by \frac{\left(3a\right)^{-2}}{b^{-2}} by multiplying \frac{a^{3}}{\left(2b^{2}\right)^{3}} by the reciprocal of \frac{\left(3a\right)^{-2}}{b^{-2}}.
\frac{a^{3}b^{-2}}{2^{3}\left(b^{2}\right)^{3}\times \left(3a\right)^{-2}}
Expand \left(2b^{2}\right)^{3}.
\frac{a^{3}b^{-2}}{2^{3}b^{6}\times \left(3a\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{a^{3}b^{-2}}{8b^{6}\times \left(3a\right)^{-2}}
Calculate 2 to the power of 3 and get 8.
\frac{a^{3}b^{-2}}{8b^{6}\times 3^{-2}a^{-2}}
Expand \left(3a\right)^{-2}.
\frac{a^{3}b^{-2}}{8b^{6}\times \frac{1}{9}a^{-2}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{a^{3}b^{-2}}{\frac{8}{9}b^{6}a^{-2}}
Multiply 8 and \frac{1}{9} to get \frac{8}{9}.
\frac{b^{-2}a^{5}}{\frac{8}{9}b^{6}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{a^{5}}{\frac{8}{9}b^{8}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\frac{a^{3}}{\left(2b^{2}\right)^{3}}}{\left(\frac{3a}{b}\right)^{-2}}
To raise \frac{a}{2b^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{a^{3}}{\left(2b^{2}\right)^{3}}}{\frac{\left(3a\right)^{-2}}{b^{-2}}}
To raise \frac{3a}{b} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{3}b^{-2}}{\left(2b^{2}\right)^{3}\times \left(3a\right)^{-2}}
Divide \frac{a^{3}}{\left(2b^{2}\right)^{3}} by \frac{\left(3a\right)^{-2}}{b^{-2}} by multiplying \frac{a^{3}}{\left(2b^{2}\right)^{3}} by the reciprocal of \frac{\left(3a\right)^{-2}}{b^{-2}}.
\frac{a^{3}b^{-2}}{2^{3}\left(b^{2}\right)^{3}\times \left(3a\right)^{-2}}
Expand \left(2b^{2}\right)^{3}.
\frac{a^{3}b^{-2}}{2^{3}b^{6}\times \left(3a\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{a^{3}b^{-2}}{8b^{6}\times \left(3a\right)^{-2}}
Calculate 2 to the power of 3 and get 8.
\frac{a^{3}b^{-2}}{8b^{6}\times 3^{-2}a^{-2}}
Expand \left(3a\right)^{-2}.
\frac{a^{3}b^{-2}}{8b^{6}\times \frac{1}{9}a^{-2}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{a^{3}b^{-2}}{\frac{8}{9}b^{6}a^{-2}}
Multiply 8 and \frac{1}{9} to get \frac{8}{9}.
\frac{b^{-2}a^{5}}{\frac{8}{9}b^{6}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{a^{5}}{\frac{8}{9}b^{8}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.