Evaluate
\frac{3\pi a^{2}}{32}
Expand
\frac{3\pi a^{2}}{32}
Share
Copied to clipboard
\frac{\frac{a^{2}}{2^{2}}\pi }{2}-\frac{\left(\frac{\frac{a}{2}}{2}\right)^{2}\pi }{2}
To raise \frac{a}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{a^{2}\pi }{2^{2}}}{2}-\frac{\left(\frac{\frac{a}{2}}{2}\right)^{2}\pi }{2}
Express \frac{a^{2}}{2^{2}}\pi as a single fraction.
\frac{a^{2}\pi }{2^{2}\times 2}-\frac{\left(\frac{\frac{a}{2}}{2}\right)^{2}\pi }{2}
Express \frac{\frac{a^{2}\pi }{2^{2}}}{2} as a single fraction.
\frac{a^{2}\pi }{2^{3}}-\frac{\left(\frac{\frac{a}{2}}{2}\right)^{2}\pi }{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{a^{2}\pi }{8}-\frac{\left(\frac{\frac{a}{2}}{2}\right)^{2}\pi }{2}
Calculate 2 to the power of 3 and get 8.
\frac{a^{2}\pi }{8}-\frac{\left(\frac{a}{2\times 2}\right)^{2}\pi }{2}
Express \frac{\frac{a}{2}}{2} as a single fraction.
\frac{a^{2}\pi }{8}-\frac{\left(\frac{a}{4}\right)^{2}\pi }{2}
Multiply 2 and 2 to get 4.
\frac{a^{2}\pi }{8}-\frac{\frac{a^{2}}{4^{2}}\pi }{2}
To raise \frac{a}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{2}\pi }{8}-\frac{\frac{a^{2}\pi }{4^{2}}}{2}
Express \frac{a^{2}}{4^{2}}\pi as a single fraction.
\frac{a^{2}\pi }{8}-\frac{a^{2}\pi }{4^{2}\times 2}
Express \frac{\frac{a^{2}\pi }{4^{2}}}{2} as a single fraction.
\frac{a^{2}\pi }{8}-\frac{a^{2}\pi }{16\times 2}
Calculate 4 to the power of 2 and get 16.
\frac{a^{2}\pi }{8}-\frac{a^{2}\pi }{32}
Multiply 16 and 2 to get 32.
\frac{3}{32}a^{2}\pi
Combine \frac{a^{2}\pi }{8} and -\frac{a^{2}\pi }{32} to get \frac{3}{32}a^{2}\pi .
\frac{\frac{a^{2}}{2^{2}}\pi }{2}-\frac{\left(\frac{\frac{a}{2}}{2}\right)^{2}\pi }{2}
To raise \frac{a}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{a^{2}\pi }{2^{2}}}{2}-\frac{\left(\frac{\frac{a}{2}}{2}\right)^{2}\pi }{2}
Express \frac{a^{2}}{2^{2}}\pi as a single fraction.
\frac{a^{2}\pi }{2^{2}\times 2}-\frac{\left(\frac{\frac{a}{2}}{2}\right)^{2}\pi }{2}
Express \frac{\frac{a^{2}\pi }{2^{2}}}{2} as a single fraction.
\frac{a^{2}\pi }{2^{3}}-\frac{\left(\frac{\frac{a}{2}}{2}\right)^{2}\pi }{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{a^{2}\pi }{8}-\frac{\left(\frac{\frac{a}{2}}{2}\right)^{2}\pi }{2}
Calculate 2 to the power of 3 and get 8.
\frac{a^{2}\pi }{8}-\frac{\left(\frac{a}{2\times 2}\right)^{2}\pi }{2}
Express \frac{\frac{a}{2}}{2} as a single fraction.
\frac{a^{2}\pi }{8}-\frac{\left(\frac{a}{4}\right)^{2}\pi }{2}
Multiply 2 and 2 to get 4.
\frac{a^{2}\pi }{8}-\frac{\frac{a^{2}}{4^{2}}\pi }{2}
To raise \frac{a}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{2}\pi }{8}-\frac{\frac{a^{2}\pi }{4^{2}}}{2}
Express \frac{a^{2}}{4^{2}}\pi as a single fraction.
\frac{a^{2}\pi }{8}-\frac{a^{2}\pi }{4^{2}\times 2}
Express \frac{\frac{a^{2}\pi }{4^{2}}}{2} as a single fraction.
\frac{a^{2}\pi }{8}-\frac{a^{2}\pi }{16\times 2}
Calculate 4 to the power of 2 and get 16.
\frac{a^{2}\pi }{8}-\frac{a^{2}\pi }{32}
Multiply 16 and 2 to get 32.
\frac{3}{32}a^{2}\pi
Combine \frac{a^{2}\pi }{8} and -\frac{a^{2}\pi }{32} to get \frac{3}{32}a^{2}\pi .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}