Factor
\frac{\sqrt{3}a^{3}\left(a^{6}-3\right)}{9}
Evaluate
\frac{\sqrt{3}a^{3}\left(a^{6}-3\right)}{9}
Share
Copied to clipboard
factor(\left(\frac{a^{3}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{3}-a^{2}\times \frac{a}{\sqrt{3}})
Rationalize the denominator of \frac{a^{3}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
factor(\left(\frac{a^{3}\sqrt{3}}{3}\right)^{3}-a^{2}\times \frac{a}{\sqrt{3}})
The square of \sqrt{3} is 3.
factor(\frac{\left(a^{3}\sqrt{3}\right)^{3}}{3^{3}}-a^{2}\times \frac{a}{\sqrt{3}})
To raise \frac{a^{3}\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
factor(\frac{\left(a^{3}\sqrt{3}\right)^{3}}{3^{3}}-a^{2}\times \frac{a\sqrt{3}}{\left(\sqrt{3}\right)^{2}})
Rationalize the denominator of \frac{a}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
factor(\frac{\left(a^{3}\sqrt{3}\right)^{3}}{3^{3}}-a^{2}\times \frac{a\sqrt{3}}{3})
The square of \sqrt{3} is 3.
factor(\frac{\left(a^{3}\sqrt{3}\right)^{3}}{3^{3}}-\frac{a^{2}a\sqrt{3}}{3})
Express a^{2}\times \frac{a\sqrt{3}}{3} as a single fraction.
factor(\frac{\left(a^{3}\sqrt{3}\right)^{3}}{3^{3}}-\frac{a^{3}\sqrt{3}}{3})
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
factor(\frac{\left(a^{3}\sqrt{3}\right)^{3}}{27}-\frac{9a^{3}\sqrt{3}}{27})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3^{3} and 3 is 27. Multiply \frac{a^{3}\sqrt{3}}{3} times \frac{9}{9}.
factor(\frac{\left(a^{3}\sqrt{3}\right)^{3}-9a^{3}\sqrt{3}}{27})
Since \frac{\left(a^{3}\sqrt{3}\right)^{3}}{27} and \frac{9a^{3}\sqrt{3}}{27} have the same denominator, subtract them by subtracting their numerators.
factor(\frac{\left(a^{3}\right)^{3}\left(\sqrt{3}\right)^{3}-9a^{3}\sqrt{3}}{27})
Expand \left(a^{3}\sqrt{3}\right)^{3}.
factor(\frac{a^{9}\left(\sqrt{3}\right)^{3}-9a^{3}\sqrt{3}}{27})
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
a^{3}\left(a^{6}\left(\sqrt{3}\right)^{3}-9\sqrt{3}\right)
Consider a^{9}\left(\sqrt{3}\right)^{3}-9a^{3}\sqrt{3}. Factor out a^{3}.
3\left(a^{6}\sqrt{3}-3\sqrt{3}\right)
Consider a^{6}\times 3^{\frac{3}{2}}-9\times 3^{\frac{1}{2}}. Factor out 3.
\sqrt{3}\left(a^{6}-3\right)
Consider a^{6}\sqrt{3}-3\sqrt{3}. Factor out \sqrt{3}.
\frac{\left(a^{6}-3\right)\sqrt{3}a^{3}}{9}
Rewrite the complete factored expression. Simplify. Polynomial a^{6}-3 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}