Evaluate
\frac{\left(a+2\right)\left(-a^{2}+3a-1\right)}{a\left(2-a\right)\left(a-3\right)}
Expand
-\frac{-a^{3}+a^{2}+5a-2}{a\left(a-3\right)\left(a-2\right)}
Share
Copied to clipboard
\frac{a^{2}-4}{a^{2}-3a}-\frac{1}{2-a}+\frac{2}{a^{2}-2a}
Combine -4a and a to get -3a.
\frac{a^{2}-4}{a\left(a-3\right)}-\frac{1}{2-a}+\frac{2}{a^{2}-2a}
Factor a^{2}-3a.
\frac{\left(a^{2}-4\right)\left(-a+2\right)}{a\left(a-3\right)\left(-a+2\right)}-\frac{a\left(a-3\right)}{a\left(a-3\right)\left(-a+2\right)}+\frac{2}{a^{2}-2a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-3\right) and 2-a is a\left(a-3\right)\left(-a+2\right). Multiply \frac{a^{2}-4}{a\left(a-3\right)} times \frac{-a+2}{-a+2}. Multiply \frac{1}{2-a} times \frac{a\left(a-3\right)}{a\left(a-3\right)}.
\frac{\left(a^{2}-4\right)\left(-a+2\right)-a\left(a-3\right)}{a\left(a-3\right)\left(-a+2\right)}+\frac{2}{a^{2}-2a}
Since \frac{\left(a^{2}-4\right)\left(-a+2\right)}{a\left(a-3\right)\left(-a+2\right)} and \frac{a\left(a-3\right)}{a\left(a-3\right)\left(-a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-a^{3}+2a^{2}+4a-8-a^{2}+3a}{a\left(a-3\right)\left(-a+2\right)}+\frac{2}{a^{2}-2a}
Do the multiplications in \left(a^{2}-4\right)\left(-a+2\right)-a\left(a-3\right).
\frac{-a^{3}+a^{2}+7a-8}{a\left(a-3\right)\left(-a+2\right)}+\frac{2}{a^{2}-2a}
Combine like terms in -a^{3}+2a^{2}+4a-8-a^{2}+3a.
\frac{-a^{3}+a^{2}+7a-8}{a\left(a-3\right)\left(-a+2\right)}+\frac{2}{a\left(a-2\right)}
Factor a^{2}-2a.
\frac{-\left(-a^{3}+a^{2}+7a-8\right)}{a\left(a-3\right)\left(a-2\right)}+\frac{2\left(a-3\right)}{a\left(a-3\right)\left(a-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-3\right)\left(-a+2\right) and a\left(a-2\right) is a\left(a-3\right)\left(a-2\right). Multiply \frac{-a^{3}+a^{2}+7a-8}{a\left(a-3\right)\left(-a+2\right)} times \frac{-1}{-1}. Multiply \frac{2}{a\left(a-2\right)} times \frac{a-3}{a-3}.
\frac{-\left(-a^{3}+a^{2}+7a-8\right)+2\left(a-3\right)}{a\left(a-3\right)\left(a-2\right)}
Since \frac{-\left(-a^{3}+a^{2}+7a-8\right)}{a\left(a-3\right)\left(a-2\right)} and \frac{2\left(a-3\right)}{a\left(a-3\right)\left(a-2\right)} have the same denominator, add them by adding their numerators.
\frac{a^{3}-a^{2}-7a+8+2a-6}{a\left(a-3\right)\left(a-2\right)}
Do the multiplications in -\left(-a^{3}+a^{2}+7a-8\right)+2\left(a-3\right).
\frac{a^{3}-a^{2}-5a+2}{a\left(a-3\right)\left(a-2\right)}
Combine like terms in a^{3}-a^{2}-7a+8+2a-6.
\frac{a^{3}-a^{2}-5a+2}{a^{3}-5a^{2}+6a}
Expand a\left(a-3\right)\left(a-2\right).
\frac{a^{2}-4}{a^{2}-3a}-\frac{1}{2-a}+\frac{2}{a^{2}-2a}
Combine -4a and a to get -3a.
\frac{a^{2}-4}{a\left(a-3\right)}-\frac{1}{2-a}+\frac{2}{a^{2}-2a}
Factor a^{2}-3a.
\frac{\left(a^{2}-4\right)\left(-a+2\right)}{a\left(a-3\right)\left(-a+2\right)}-\frac{a\left(a-3\right)}{a\left(a-3\right)\left(-a+2\right)}+\frac{2}{a^{2}-2a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-3\right) and 2-a is a\left(a-3\right)\left(-a+2\right). Multiply \frac{a^{2}-4}{a\left(a-3\right)} times \frac{-a+2}{-a+2}. Multiply \frac{1}{2-a} times \frac{a\left(a-3\right)}{a\left(a-3\right)}.
\frac{\left(a^{2}-4\right)\left(-a+2\right)-a\left(a-3\right)}{a\left(a-3\right)\left(-a+2\right)}+\frac{2}{a^{2}-2a}
Since \frac{\left(a^{2}-4\right)\left(-a+2\right)}{a\left(a-3\right)\left(-a+2\right)} and \frac{a\left(a-3\right)}{a\left(a-3\right)\left(-a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-a^{3}+2a^{2}+4a-8-a^{2}+3a}{a\left(a-3\right)\left(-a+2\right)}+\frac{2}{a^{2}-2a}
Do the multiplications in \left(a^{2}-4\right)\left(-a+2\right)-a\left(a-3\right).
\frac{-a^{3}+a^{2}+7a-8}{a\left(a-3\right)\left(-a+2\right)}+\frac{2}{a^{2}-2a}
Combine like terms in -a^{3}+2a^{2}+4a-8-a^{2}+3a.
\frac{-a^{3}+a^{2}+7a-8}{a\left(a-3\right)\left(-a+2\right)}+\frac{2}{a\left(a-2\right)}
Factor a^{2}-2a.
\frac{-\left(-a^{3}+a^{2}+7a-8\right)}{a\left(a-3\right)\left(a-2\right)}+\frac{2\left(a-3\right)}{a\left(a-3\right)\left(a-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-3\right)\left(-a+2\right) and a\left(a-2\right) is a\left(a-3\right)\left(a-2\right). Multiply \frac{-a^{3}+a^{2}+7a-8}{a\left(a-3\right)\left(-a+2\right)} times \frac{-1}{-1}. Multiply \frac{2}{a\left(a-2\right)} times \frac{a-3}{a-3}.
\frac{-\left(-a^{3}+a^{2}+7a-8\right)+2\left(a-3\right)}{a\left(a-3\right)\left(a-2\right)}
Since \frac{-\left(-a^{3}+a^{2}+7a-8\right)}{a\left(a-3\right)\left(a-2\right)} and \frac{2\left(a-3\right)}{a\left(a-3\right)\left(a-2\right)} have the same denominator, add them by adding their numerators.
\frac{a^{3}-a^{2}-7a+8+2a-6}{a\left(a-3\right)\left(a-2\right)}
Do the multiplications in -\left(-a^{3}+a^{2}+7a-8\right)+2\left(a-3\right).
\frac{a^{3}-a^{2}-5a+2}{a\left(a-3\right)\left(a-2\right)}
Combine like terms in a^{3}-a^{2}-7a+8+2a-6.
\frac{a^{3}-a^{2}-5a+2}{a^{3}-5a^{2}+6a}
Expand a\left(a-3\right)\left(a-2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}