Evaluate
-\frac{\left(a+1\right)\left(a+2\right)}{a\left(2-a\right)}
Expand
\frac{a^{2}+3a+2}{a^{2}-2a}
Share
Copied to clipboard
\frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)^{2}}-\frac{1}{2-a}+\frac{2}{a^{2}-2a}
Factor the expressions that are not already factored in \frac{a^{2}-4}{a^{2}-4a+4}.
\frac{a+2}{a-2}-\frac{1}{2-a}+\frac{2}{a^{2}-2a}
Cancel out a-2 in both numerator and denominator.
\frac{a+2}{a-2}-\frac{-1}{a-2}+\frac{2}{a^{2}-2a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-2 and 2-a is a-2. Multiply \frac{1}{2-a} times \frac{-1}{-1}.
\frac{a+2-\left(-1\right)}{a-2}+\frac{2}{a^{2}-2a}
Since \frac{a+2}{a-2} and \frac{-1}{a-2} have the same denominator, subtract them by subtracting their numerators.
\frac{a+2+1}{a-2}+\frac{2}{a^{2}-2a}
Do the multiplications in a+2-\left(-1\right).
\frac{a+3}{a-2}+\frac{2}{a^{2}-2a}
Combine like terms in a+2+1.
\frac{a+3}{a-2}+\frac{2}{a\left(a-2\right)}
Factor a^{2}-2a.
\frac{\left(a+3\right)a}{a\left(a-2\right)}+\frac{2}{a\left(a-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-2 and a\left(a-2\right) is a\left(a-2\right). Multiply \frac{a+3}{a-2} times \frac{a}{a}.
\frac{\left(a+3\right)a+2}{a\left(a-2\right)}
Since \frac{\left(a+3\right)a}{a\left(a-2\right)} and \frac{2}{a\left(a-2\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}+3a+2}{a\left(a-2\right)}
Do the multiplications in \left(a+3\right)a+2.
\frac{a^{2}+3a+2}{a^{2}-2a}
Expand a\left(a-2\right).
\frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)^{2}}-\frac{1}{2-a}+\frac{2}{a^{2}-2a}
Factor the expressions that are not already factored in \frac{a^{2}-4}{a^{2}-4a+4}.
\frac{a+2}{a-2}-\frac{1}{2-a}+\frac{2}{a^{2}-2a}
Cancel out a-2 in both numerator and denominator.
\frac{a+2}{a-2}-\frac{-1}{a-2}+\frac{2}{a^{2}-2a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-2 and 2-a is a-2. Multiply \frac{1}{2-a} times \frac{-1}{-1}.
\frac{a+2-\left(-1\right)}{a-2}+\frac{2}{a^{2}-2a}
Since \frac{a+2}{a-2} and \frac{-1}{a-2} have the same denominator, subtract them by subtracting their numerators.
\frac{a+2+1}{a-2}+\frac{2}{a^{2}-2a}
Do the multiplications in a+2-\left(-1\right).
\frac{a+3}{a-2}+\frac{2}{a^{2}-2a}
Combine like terms in a+2+1.
\frac{a+3}{a-2}+\frac{2}{a\left(a-2\right)}
Factor a^{2}-2a.
\frac{\left(a+3\right)a}{a\left(a-2\right)}+\frac{2}{a\left(a-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-2 and a\left(a-2\right) is a\left(a-2\right). Multiply \frac{a+3}{a-2} times \frac{a}{a}.
\frac{\left(a+3\right)a+2}{a\left(a-2\right)}
Since \frac{\left(a+3\right)a}{a\left(a-2\right)} and \frac{2}{a\left(a-2\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}+3a+2}{a\left(a-2\right)}
Do the multiplications in \left(a+3\right)a+2.
\frac{a^{2}+3a+2}{a^{2}-2a}
Expand a\left(a-2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}