Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)^{2}}-\frac{1}{2-a}+\frac{2}{a^{2}-2a}
Factor the expressions that are not already factored in \frac{a^{2}-4}{a^{2}-4a+4}.
\frac{a+2}{a-2}-\frac{1}{2-a}+\frac{2}{a^{2}-2a}
Cancel out a-2 in both numerator and denominator.
\frac{a+2}{a-2}-\frac{-1}{a-2}+\frac{2}{a^{2}-2a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-2 and 2-a is a-2. Multiply \frac{1}{2-a} times \frac{-1}{-1}.
\frac{a+2-\left(-1\right)}{a-2}+\frac{2}{a^{2}-2a}
Since \frac{a+2}{a-2} and \frac{-1}{a-2} have the same denominator, subtract them by subtracting their numerators.
\frac{a+2+1}{a-2}+\frac{2}{a^{2}-2a}
Do the multiplications in a+2-\left(-1\right).
\frac{a+3}{a-2}+\frac{2}{a^{2}-2a}
Combine like terms in a+2+1.
\frac{a+3}{a-2}+\frac{2}{a\left(a-2\right)}
Factor a^{2}-2a.
\frac{\left(a+3\right)a}{a\left(a-2\right)}+\frac{2}{a\left(a-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-2 and a\left(a-2\right) is a\left(a-2\right). Multiply \frac{a+3}{a-2} times \frac{a}{a}.
\frac{\left(a+3\right)a+2}{a\left(a-2\right)}
Since \frac{\left(a+3\right)a}{a\left(a-2\right)} and \frac{2}{a\left(a-2\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}+3a+2}{a\left(a-2\right)}
Do the multiplications in \left(a+3\right)a+2.
\frac{a^{2}+3a+2}{a^{2}-2a}
Expand a\left(a-2\right).
\frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)^{2}}-\frac{1}{2-a}+\frac{2}{a^{2}-2a}
Factor the expressions that are not already factored in \frac{a^{2}-4}{a^{2}-4a+4}.
\frac{a+2}{a-2}-\frac{1}{2-a}+\frac{2}{a^{2}-2a}
Cancel out a-2 in both numerator and denominator.
\frac{a+2}{a-2}-\frac{-1}{a-2}+\frac{2}{a^{2}-2a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-2 and 2-a is a-2. Multiply \frac{1}{2-a} times \frac{-1}{-1}.
\frac{a+2-\left(-1\right)}{a-2}+\frac{2}{a^{2}-2a}
Since \frac{a+2}{a-2} and \frac{-1}{a-2} have the same denominator, subtract them by subtracting their numerators.
\frac{a+2+1}{a-2}+\frac{2}{a^{2}-2a}
Do the multiplications in a+2-\left(-1\right).
\frac{a+3}{a-2}+\frac{2}{a^{2}-2a}
Combine like terms in a+2+1.
\frac{a+3}{a-2}+\frac{2}{a\left(a-2\right)}
Factor a^{2}-2a.
\frac{\left(a+3\right)a}{a\left(a-2\right)}+\frac{2}{a\left(a-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-2 and a\left(a-2\right) is a\left(a-2\right). Multiply \frac{a+3}{a-2} times \frac{a}{a}.
\frac{\left(a+3\right)a+2}{a\left(a-2\right)}
Since \frac{\left(a+3\right)a}{a\left(a-2\right)} and \frac{2}{a\left(a-2\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}+3a+2}{a\left(a-2\right)}
Do the multiplications in \left(a+3\right)a+2.
\frac{a^{2}+3a+2}{a^{2}-2a}
Expand a\left(a-2\right).