Evaluate
a
Differentiate w.r.t. a
1
Share
Copied to clipboard
\frac{\frac{a^{2}}{a-1}+\frac{-1}{a-1}}{1+\frac{1}{a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and 1-a is a-1. Multiply \frac{1}{1-a} times \frac{-1}{-1}.
\frac{\frac{a^{2}-1}{a-1}}{1+\frac{1}{a}}
Since \frac{a^{2}}{a-1} and \frac{-1}{a-1} have the same denominator, add them by adding their numerators.
\frac{\frac{\left(a-1\right)\left(a+1\right)}{a-1}}{1+\frac{1}{a}}
Factor the expressions that are not already factored in \frac{a^{2}-1}{a-1}.
\frac{a+1}{1+\frac{1}{a}}
Cancel out a-1 in both numerator and denominator.
\frac{a+1}{\frac{a}{a}+\frac{1}{a}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
\frac{a+1}{\frac{a+1}{a}}
Since \frac{a}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{\left(a+1\right)a}{a+1}
Divide a+1 by \frac{a+1}{a} by multiplying a+1 by the reciprocal of \frac{a+1}{a}.
a
Cancel out a+1 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a^{2}}{a-1}+\frac{-1}{a-1}}{1+\frac{1}{a}})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and 1-a is a-1. Multiply \frac{1}{1-a} times \frac{-1}{-1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a^{2}-1}{a-1}}{1+\frac{1}{a}})
Since \frac{a^{2}}{a-1} and \frac{-1}{a-1} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{\left(a-1\right)\left(a+1\right)}{a-1}}{1+\frac{1}{a}})
Factor the expressions that are not already factored in \frac{a^{2}-1}{a-1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a+1}{1+\frac{1}{a}})
Cancel out a-1 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a+1}{\frac{a}{a}+\frac{1}{a}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a+1}{\frac{a+1}{a}})
Since \frac{a}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a+1\right)a}{a+1})
Divide a+1 by \frac{a+1}{a} by multiplying a+1 by the reciprocal of \frac{a+1}{a}.
\frac{\mathrm{d}}{\mathrm{d}a}(a)
Cancel out a+1 in both numerator and denominator.
a^{1-1}
The derivative of ax^{n} is nax^{n-1}.
a^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}