Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{a^{2}}{a+B}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Factor a^{2}+2aB+B^{2}.
\frac{\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+B and \left(B+a\right)^{2} is \left(B+a\right)^{2}. Multiply \frac{a^{2}}{a+B} times \frac{B+a}{B+a}.
\frac{\frac{a^{2}\left(B+a\right)-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Since \frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}} and \frac{a^{3}}{\left(B+a\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}B+a^{3}-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Do the multiplications in a^{2}\left(B+a\right)-a^{3}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Combine like terms in a^{2}B+a^{3}-a^{3}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Factor a^{2}-B^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+B and \left(B+a\right)\left(-B+a\right) is \left(B+a\right)\left(-B+a\right). Multiply \frac{a}{a+B} times \frac{-B+a}{-B+a}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Since \frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)} and \frac{a^{2}}{\left(B+a\right)\left(-B+a\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB+a^{2}-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Do the multiplications in a\left(-B+a\right)-a^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB}{\left(B+a\right)\left(-B+a\right)}}
Combine like terms in -aB+a^{2}-a^{2}.
\frac{a^{2}B\left(B+a\right)\left(-B+a\right)}{\left(B+a\right)^{2}\left(-1\right)aB}
Divide \frac{a^{2}B}{\left(B+a\right)^{2}} by \frac{-aB}{\left(B+a\right)\left(-B+a\right)} by multiplying \frac{a^{2}B}{\left(B+a\right)^{2}} by the reciprocal of \frac{-aB}{\left(B+a\right)\left(-B+a\right)}.
\frac{a\left(-B+a\right)}{-\left(B+a\right)}
Cancel out Ba\left(B+a\right) in both numerator and denominator.
\frac{-aB+a^{2}}{-\left(B+a\right)}
Use the distributive property to multiply a by -B+a.
\frac{-aB+a^{2}}{-B-a}
To find the opposite of B+a, find the opposite of each term.
\frac{\frac{a^{2}}{a+B}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Factor a^{2}+2aB+B^{2}.
\frac{\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+B and \left(B+a\right)^{2} is \left(B+a\right)^{2}. Multiply \frac{a^{2}}{a+B} times \frac{B+a}{B+a}.
\frac{\frac{a^{2}\left(B+a\right)-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Since \frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}} and \frac{a^{3}}{\left(B+a\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}B+a^{3}-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Do the multiplications in a^{2}\left(B+a\right)-a^{3}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Combine like terms in a^{2}B+a^{3}-a^{3}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Factor a^{2}-B^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+B and \left(B+a\right)\left(-B+a\right) is \left(B+a\right)\left(-B+a\right). Multiply \frac{a}{a+B} times \frac{-B+a}{-B+a}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Since \frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)} and \frac{a^{2}}{\left(B+a\right)\left(-B+a\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB+a^{2}-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Do the multiplications in a\left(-B+a\right)-a^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB}{\left(B+a\right)\left(-B+a\right)}}
Combine like terms in -aB+a^{2}-a^{2}.
\frac{a^{2}B\left(B+a\right)\left(-B+a\right)}{\left(B+a\right)^{2}\left(-1\right)aB}
Divide \frac{a^{2}B}{\left(B+a\right)^{2}} by \frac{-aB}{\left(B+a\right)\left(-B+a\right)} by multiplying \frac{a^{2}B}{\left(B+a\right)^{2}} by the reciprocal of \frac{-aB}{\left(B+a\right)\left(-B+a\right)}.
\frac{a\left(-B+a\right)}{-\left(B+a\right)}
Cancel out Ba\left(B+a\right) in both numerator and denominator.
\frac{-aB+a^{2}}{-\left(B+a\right)}
Use the distributive property to multiply a by -B+a.
\frac{-aB+a^{2}}{-B-a}
To find the opposite of B+a, find the opposite of each term.