( \frac { a ^ { 2 } } { 2 } - a + 1 ) \cdot ( a + 1 + \frac { a } { 2 }
Evaluate
\frac{3a^{3}}{4}-a^{2}+\frac{a}{2}+1
Expand
\frac{3a^{3}}{4}-a^{2}+\frac{a}{2}+1
Share
Copied to clipboard
\left(\frac{a^{2}}{2}+\frac{2\left(-a+1\right)}{2}\right)\left(a+1+\frac{a}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -a+1 times \frac{2}{2}.
\frac{a^{2}+2\left(-a+1\right)}{2}\left(a+1+\frac{a}{2}\right)
Since \frac{a^{2}}{2} and \frac{2\left(-a+1\right)}{2} have the same denominator, add them by adding their numerators.
\frac{a^{2}-2a+2}{2}\left(a+1+\frac{a}{2}\right)
Do the multiplications in a^{2}+2\left(-a+1\right).
\frac{a^{2}-2a+2}{2}\left(\frac{3}{2}a+1\right)
Combine a and \frac{a}{2} to get \frac{3}{2}a.
\frac{3}{2}\times \frac{a^{2}-2a+2}{2}a+\frac{a^{2}-2a+2}{2}
Use the distributive property to multiply \frac{a^{2}-2a+2}{2} by \frac{3}{2}a+1.
\frac{3\left(a^{2}-2a+2\right)}{2\times 2}a+\frac{a^{2}-2a+2}{2}
Multiply \frac{3}{2} times \frac{a^{2}-2a+2}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3\left(a^{2}-2a+2\right)a}{2\times 2}+\frac{a^{2}-2a+2}{2}
Express \frac{3\left(a^{2}-2a+2\right)}{2\times 2}a as a single fraction.
\frac{3\left(a^{2}-2a+2\right)a}{2\times 2}+\frac{2\left(a^{2}-2a+2\right)}{2\times 2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\times 2 and 2 is 2\times 2. Multiply \frac{a^{2}-2a+2}{2} times \frac{2}{2}.
\frac{3\left(a^{2}-2a+2\right)a+2\left(a^{2}-2a+2\right)}{2\times 2}
Since \frac{3\left(a^{2}-2a+2\right)a}{2\times 2} and \frac{2\left(a^{2}-2a+2\right)}{2\times 2} have the same denominator, add them by adding their numerators.
\frac{3a^{3}-6a^{2}+6a+2a^{2}-4a+4}{2\times 2}
Do the multiplications in 3\left(a^{2}-2a+2\right)a+2\left(a^{2}-2a+2\right).
\frac{3a^{3}-4a^{2}+2a+4}{2\times 2}
Combine like terms in 3a^{3}-6a^{2}+6a+2a^{2}-4a+4.
\frac{3a^{3}-4a^{2}+2a+4}{4}
Expand 2\times 2.
\left(\frac{a^{2}}{2}+\frac{2\left(-a+1\right)}{2}\right)\left(a+1+\frac{a}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -a+1 times \frac{2}{2}.
\frac{a^{2}+2\left(-a+1\right)}{2}\left(a+1+\frac{a}{2}\right)
Since \frac{a^{2}}{2} and \frac{2\left(-a+1\right)}{2} have the same denominator, add them by adding their numerators.
\frac{a^{2}-2a+2}{2}\left(a+1+\frac{a}{2}\right)
Do the multiplications in a^{2}+2\left(-a+1\right).
\frac{a^{2}-2a+2}{2}\left(\frac{3}{2}a+1\right)
Combine a and \frac{a}{2} to get \frac{3}{2}a.
\frac{3}{2}\times \frac{a^{2}-2a+2}{2}a+\frac{a^{2}-2a+2}{2}
Use the distributive property to multiply \frac{a^{2}-2a+2}{2} by \frac{3}{2}a+1.
\frac{3\left(a^{2}-2a+2\right)}{2\times 2}a+\frac{a^{2}-2a+2}{2}
Multiply \frac{3}{2} times \frac{a^{2}-2a+2}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3\left(a^{2}-2a+2\right)a}{2\times 2}+\frac{a^{2}-2a+2}{2}
Express \frac{3\left(a^{2}-2a+2\right)}{2\times 2}a as a single fraction.
\frac{3\left(a^{2}-2a+2\right)a}{2\times 2}+\frac{2\left(a^{2}-2a+2\right)}{2\times 2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\times 2 and 2 is 2\times 2. Multiply \frac{a^{2}-2a+2}{2} times \frac{2}{2}.
\frac{3\left(a^{2}-2a+2\right)a+2\left(a^{2}-2a+2\right)}{2\times 2}
Since \frac{3\left(a^{2}-2a+2\right)a}{2\times 2} and \frac{2\left(a^{2}-2a+2\right)}{2\times 2} have the same denominator, add them by adding their numerators.
\frac{3a^{3}-6a^{2}+6a+2a^{2}-4a+4}{2\times 2}
Do the multiplications in 3\left(a^{2}-2a+2\right)a+2\left(a^{2}-2a+2\right).
\frac{3a^{3}-4a^{2}+2a+4}{2\times 2}
Combine like terms in 3a^{3}-6a^{2}+6a+2a^{2}-4a+4.
\frac{3a^{3}-4a^{2}+2a+4}{4}
Expand 2\times 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}