Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{a^{2}}{2}+\frac{2\left(-a+1\right)}{2}\right)\left(a+1+\frac{a}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -a+1 times \frac{2}{2}.
\frac{a^{2}+2\left(-a+1\right)}{2}\left(a+1+\frac{a}{2}\right)
Since \frac{a^{2}}{2} and \frac{2\left(-a+1\right)}{2} have the same denominator, add them by adding their numerators.
\frac{a^{2}-2a+2}{2}\left(a+1+\frac{a}{2}\right)
Do the multiplications in a^{2}+2\left(-a+1\right).
\frac{a^{2}-2a+2}{2}\left(\frac{3}{2}a+1\right)
Combine a and \frac{a}{2} to get \frac{3}{2}a.
\frac{3}{2}\times \frac{a^{2}-2a+2}{2}a+\frac{a^{2}-2a+2}{2}
Use the distributive property to multiply \frac{a^{2}-2a+2}{2} by \frac{3}{2}a+1.
\frac{3\left(a^{2}-2a+2\right)}{2\times 2}a+\frac{a^{2}-2a+2}{2}
Multiply \frac{3}{2} times \frac{a^{2}-2a+2}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3\left(a^{2}-2a+2\right)a}{2\times 2}+\frac{a^{2}-2a+2}{2}
Express \frac{3\left(a^{2}-2a+2\right)}{2\times 2}a as a single fraction.
\frac{3\left(a^{2}-2a+2\right)a}{2\times 2}+\frac{2\left(a^{2}-2a+2\right)}{2\times 2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\times 2 and 2 is 2\times 2. Multiply \frac{a^{2}-2a+2}{2} times \frac{2}{2}.
\frac{3\left(a^{2}-2a+2\right)a+2\left(a^{2}-2a+2\right)}{2\times 2}
Since \frac{3\left(a^{2}-2a+2\right)a}{2\times 2} and \frac{2\left(a^{2}-2a+2\right)}{2\times 2} have the same denominator, add them by adding their numerators.
\frac{3a^{3}-6a^{2}+6a+2a^{2}-4a+4}{2\times 2}
Do the multiplications in 3\left(a^{2}-2a+2\right)a+2\left(a^{2}-2a+2\right).
\frac{3a^{3}-4a^{2}+2a+4}{2\times 2}
Combine like terms in 3a^{3}-6a^{2}+6a+2a^{2}-4a+4.
\frac{3a^{3}-4a^{2}+2a+4}{4}
Expand 2\times 2.
\left(\frac{a^{2}}{2}+\frac{2\left(-a+1\right)}{2}\right)\left(a+1+\frac{a}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -a+1 times \frac{2}{2}.
\frac{a^{2}+2\left(-a+1\right)}{2}\left(a+1+\frac{a}{2}\right)
Since \frac{a^{2}}{2} and \frac{2\left(-a+1\right)}{2} have the same denominator, add them by adding their numerators.
\frac{a^{2}-2a+2}{2}\left(a+1+\frac{a}{2}\right)
Do the multiplications in a^{2}+2\left(-a+1\right).
\frac{a^{2}-2a+2}{2}\left(\frac{3}{2}a+1\right)
Combine a and \frac{a}{2} to get \frac{3}{2}a.
\frac{3}{2}\times \frac{a^{2}-2a+2}{2}a+\frac{a^{2}-2a+2}{2}
Use the distributive property to multiply \frac{a^{2}-2a+2}{2} by \frac{3}{2}a+1.
\frac{3\left(a^{2}-2a+2\right)}{2\times 2}a+\frac{a^{2}-2a+2}{2}
Multiply \frac{3}{2} times \frac{a^{2}-2a+2}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3\left(a^{2}-2a+2\right)a}{2\times 2}+\frac{a^{2}-2a+2}{2}
Express \frac{3\left(a^{2}-2a+2\right)}{2\times 2}a as a single fraction.
\frac{3\left(a^{2}-2a+2\right)a}{2\times 2}+\frac{2\left(a^{2}-2a+2\right)}{2\times 2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\times 2 and 2 is 2\times 2. Multiply \frac{a^{2}-2a+2}{2} times \frac{2}{2}.
\frac{3\left(a^{2}-2a+2\right)a+2\left(a^{2}-2a+2\right)}{2\times 2}
Since \frac{3\left(a^{2}-2a+2\right)a}{2\times 2} and \frac{2\left(a^{2}-2a+2\right)}{2\times 2} have the same denominator, add them by adding their numerators.
\frac{3a^{3}-6a^{2}+6a+2a^{2}-4a+4}{2\times 2}
Do the multiplications in 3\left(a^{2}-2a+2\right)a+2\left(a^{2}-2a+2\right).
\frac{3a^{3}-4a^{2}+2a+4}{2\times 2}
Combine like terms in 3a^{3}-6a^{2}+6a+2a^{2}-4a+4.
\frac{3a^{3}-4a^{2}+2a+4}{4}
Expand 2\times 2.