Evaluate
8ab^{5}
Differentiate w.r.t. b
40ab^{4}
Share
Copied to clipboard
\left(\frac{a^{-1}b^{-2}}{2b^{3}a^{-1}\times 4a}\right)^{-1}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(\frac{a^{-1}b^{-2}}{2b^{3}\times 4}\right)^{-1}
Multiply a^{-1} and a to get 1.
\left(\frac{\frac{1}{a}}{2\times 4b^{5}}\right)^{-1}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\left(\frac{\frac{1}{a}}{8b^{5}}\right)^{-1}
Multiply 2 and 4 to get 8.
\left(\frac{1}{a\times 8b^{5}}\right)^{-1}
Express \frac{\frac{1}{a}}{8b^{5}} as a single fraction.
\frac{1^{-1}}{\left(a\times 8b^{5}\right)^{-1}}
To raise \frac{1}{a\times 8b^{5}} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{\left(a\times 8b^{5}\right)^{-1}}
Calculate 1 to the power of -1 and get 1.
\frac{1}{a^{-1}\times 8^{-1}\left(b^{5}\right)^{-1}}
Expand \left(a\times 8b^{5}\right)^{-1}.
\frac{1}{a^{-1}\times 8^{-1}b^{-5}}
To raise a power to another power, multiply the exponents. Multiply 5 and -1 to get -5.
\frac{1}{a^{-1}\times \frac{1}{8}b^{-5}}
Calculate 8 to the power of -1 and get \frac{1}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}