Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. b
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{a^{-1}b^{-2}}{2b^{3}a^{-1}\times 4a}\right)^{-1}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(\frac{a^{-1}b^{-2}}{2b^{3}\times 4}\right)^{-1}
Multiply a^{-1} and a to get 1.
\left(\frac{\frac{1}{a}}{2\times 4b^{5}}\right)^{-1}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\left(\frac{\frac{1}{a}}{8b^{5}}\right)^{-1}
Multiply 2 and 4 to get 8.
\left(\frac{1}{a\times 8b^{5}}\right)^{-1}
Express \frac{\frac{1}{a}}{8b^{5}} as a single fraction.
\frac{1^{-1}}{\left(a\times 8b^{5}\right)^{-1}}
To raise \frac{1}{a\times 8b^{5}} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{\left(a\times 8b^{5}\right)^{-1}}
Calculate 1 to the power of -1 and get 1.
\frac{1}{a^{-1}\times 8^{-1}\left(b^{5}\right)^{-1}}
Expand \left(a\times 8b^{5}\right)^{-1}.
\frac{1}{a^{-1}\times 8^{-1}b^{-5}}
To raise a power to another power, multiply the exponents. Multiply 5 and -1 to get -5.
\frac{1}{a^{-1}\times \frac{1}{8}b^{-5}}
Calculate 8 to the power of -1 and get \frac{1}{8}.