Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(a+b\right)\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}-\frac{\left(a-b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}\right)\times \frac{a^{2}-b^{2}}{16ab}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-b and a+b is \left(a+b\right)\left(a-b\right). Multiply \frac{a+b}{a-b} times \frac{a+b}{a+b}. Multiply \frac{a-b}{a+b} times \frac{a-b}{a-b}.
\frac{\left(a+b\right)\left(a+b\right)-\left(a-b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}\times \frac{a^{2}-b^{2}}{16ab}
Since \frac{\left(a+b\right)\left(a+b\right)}{\left(a+b\right)\left(a-b\right)} and \frac{\left(a-b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+ab+ab+b^{2}-a^{2}+ab+ab-b^{2}}{\left(a+b\right)\left(a-b\right)}\times \frac{a^{2}-b^{2}}{16ab}
Do the multiplications in \left(a+b\right)\left(a+b\right)-\left(a-b\right)\left(a-b\right).
\frac{4ab}{\left(a+b\right)\left(a-b\right)}\times \frac{a^{2}-b^{2}}{16ab}
Combine like terms in a^{2}+ab+ab+b^{2}-a^{2}+ab+ab-b^{2}.
\frac{4ab\left(a^{2}-b^{2}\right)}{\left(a+b\right)\left(a-b\right)\times 16ab}
Multiply \frac{4ab}{\left(a+b\right)\left(a-b\right)} times \frac{a^{2}-b^{2}}{16ab} by multiplying numerator times numerator and denominator times denominator.
\frac{a^{2}-b^{2}}{4\left(a+b\right)\left(a-b\right)}
Cancel out 4ab in both numerator and denominator.
\frac{\left(a+b\right)\left(a-b\right)}{4\left(a+b\right)\left(a-b\right)}
Factor the expressions that are not already factored.
\frac{1}{4}
Cancel out \left(a+b\right)\left(a-b\right) in both numerator and denominator.