Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{a+5b}{a\left(a-5b\right)}-\frac{a-5b}{a\left(a+5b\right)}\right)\times \frac{25b^{2}-a^{2}}{5b^{2}}
Factor a^{2}-5ab. Factor a^{2}+5ab.
\left(\frac{\left(a+5b\right)\left(a+5b\right)}{a\left(a-5b\right)\left(a+5b\right)}-\frac{\left(a-5b\right)\left(a-5b\right)}{a\left(a-5b\right)\left(a+5b\right)}\right)\times \frac{25b^{2}-a^{2}}{5b^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-5b\right) and a\left(a+5b\right) is a\left(a-5b\right)\left(a+5b\right). Multiply \frac{a+5b}{a\left(a-5b\right)} times \frac{a+5b}{a+5b}. Multiply \frac{a-5b}{a\left(a+5b\right)} times \frac{a-5b}{a-5b}.
\frac{\left(a+5b\right)\left(a+5b\right)-\left(a-5b\right)\left(a-5b\right)}{a\left(a-5b\right)\left(a+5b\right)}\times \frac{25b^{2}-a^{2}}{5b^{2}}
Since \frac{\left(a+5b\right)\left(a+5b\right)}{a\left(a-5b\right)\left(a+5b\right)} and \frac{\left(a-5b\right)\left(a-5b\right)}{a\left(a-5b\right)\left(a+5b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+5ab+5ab+25b^{2}-a^{2}+5ab+5ab-25b^{2}}{a\left(a-5b\right)\left(a+5b\right)}\times \frac{25b^{2}-a^{2}}{5b^{2}}
Do the multiplications in \left(a+5b\right)\left(a+5b\right)-\left(a-5b\right)\left(a-5b\right).
\frac{20ab}{a\left(a-5b\right)\left(a+5b\right)}\times \frac{25b^{2}-a^{2}}{5b^{2}}
Combine like terms in a^{2}+5ab+5ab+25b^{2}-a^{2}+5ab+5ab-25b^{2}.
\frac{20b}{\left(a-5b\right)\left(a+5b\right)}\times \frac{25b^{2}-a^{2}}{5b^{2}}
Cancel out a in both numerator and denominator.
\frac{20b\left(25b^{2}-a^{2}\right)}{\left(a-5b\right)\left(a+5b\right)\times 5b^{2}}
Multiply \frac{20b}{\left(a-5b\right)\left(a+5b\right)} times \frac{25b^{2}-a^{2}}{5b^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{4\left(-a^{2}+25b^{2}\right)}{b\left(a-5b\right)\left(a+5b\right)}
Cancel out 5b in both numerator and denominator.
\frac{4\left(a-5b\right)\left(-a-5b\right)}{b\left(a-5b\right)\left(a+5b\right)}
Factor the expressions that are not already factored.
\frac{-4\left(a-5b\right)\left(a+5b\right)}{b\left(a-5b\right)\left(a+5b\right)}
Extract the negative sign in -a-5b.
\frac{-4}{b}
Cancel out \left(a-5b\right)\left(a+5b\right) in both numerator and denominator.
\left(\frac{a+5b}{a\left(a-5b\right)}-\frac{a-5b}{a\left(a+5b\right)}\right)\times \frac{25b^{2}-a^{2}}{5b^{2}}
Factor a^{2}-5ab. Factor a^{2}+5ab.
\left(\frac{\left(a+5b\right)\left(a+5b\right)}{a\left(a-5b\right)\left(a+5b\right)}-\frac{\left(a-5b\right)\left(a-5b\right)}{a\left(a-5b\right)\left(a+5b\right)}\right)\times \frac{25b^{2}-a^{2}}{5b^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-5b\right) and a\left(a+5b\right) is a\left(a-5b\right)\left(a+5b\right). Multiply \frac{a+5b}{a\left(a-5b\right)} times \frac{a+5b}{a+5b}. Multiply \frac{a-5b}{a\left(a+5b\right)} times \frac{a-5b}{a-5b}.
\frac{\left(a+5b\right)\left(a+5b\right)-\left(a-5b\right)\left(a-5b\right)}{a\left(a-5b\right)\left(a+5b\right)}\times \frac{25b^{2}-a^{2}}{5b^{2}}
Since \frac{\left(a+5b\right)\left(a+5b\right)}{a\left(a-5b\right)\left(a+5b\right)} and \frac{\left(a-5b\right)\left(a-5b\right)}{a\left(a-5b\right)\left(a+5b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+5ab+5ab+25b^{2}-a^{2}+5ab+5ab-25b^{2}}{a\left(a-5b\right)\left(a+5b\right)}\times \frac{25b^{2}-a^{2}}{5b^{2}}
Do the multiplications in \left(a+5b\right)\left(a+5b\right)-\left(a-5b\right)\left(a-5b\right).
\frac{20ab}{a\left(a-5b\right)\left(a+5b\right)}\times \frac{25b^{2}-a^{2}}{5b^{2}}
Combine like terms in a^{2}+5ab+5ab+25b^{2}-a^{2}+5ab+5ab-25b^{2}.
\frac{20b}{\left(a-5b\right)\left(a+5b\right)}\times \frac{25b^{2}-a^{2}}{5b^{2}}
Cancel out a in both numerator and denominator.
\frac{20b\left(25b^{2}-a^{2}\right)}{\left(a-5b\right)\left(a+5b\right)\times 5b^{2}}
Multiply \frac{20b}{\left(a-5b\right)\left(a+5b\right)} times \frac{25b^{2}-a^{2}}{5b^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{4\left(-a^{2}+25b^{2}\right)}{b\left(a-5b\right)\left(a+5b\right)}
Cancel out 5b in both numerator and denominator.
\frac{4\left(a-5b\right)\left(-a-5b\right)}{b\left(a-5b\right)\left(a+5b\right)}
Factor the expressions that are not already factored.
\frac{-4\left(a-5b\right)\left(a+5b\right)}{b\left(a-5b\right)\left(a+5b\right)}
Extract the negative sign in -a-5b.
\frac{-4}{b}
Cancel out \left(a-5b\right)\left(a+5b\right) in both numerator and denominator.