Evaluate
-\frac{4}{b}
Expand
-\frac{4}{b}
Share
Copied to clipboard
\left(\frac{a+5b}{a\left(a-5b\right)}-\frac{a-5b}{a\left(a+5b\right)}\right)\times \frac{25b^{2}-a^{2}}{5b^{2}}
Factor a^{2}-5ab. Factor a^{2}+5ab.
\left(\frac{\left(a+5b\right)\left(a+5b\right)}{a\left(a-5b\right)\left(a+5b\right)}-\frac{\left(a-5b\right)\left(a-5b\right)}{a\left(a-5b\right)\left(a+5b\right)}\right)\times \frac{25b^{2}-a^{2}}{5b^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-5b\right) and a\left(a+5b\right) is a\left(a-5b\right)\left(a+5b\right). Multiply \frac{a+5b}{a\left(a-5b\right)} times \frac{a+5b}{a+5b}. Multiply \frac{a-5b}{a\left(a+5b\right)} times \frac{a-5b}{a-5b}.
\frac{\left(a+5b\right)\left(a+5b\right)-\left(a-5b\right)\left(a-5b\right)}{a\left(a-5b\right)\left(a+5b\right)}\times \frac{25b^{2}-a^{2}}{5b^{2}}
Since \frac{\left(a+5b\right)\left(a+5b\right)}{a\left(a-5b\right)\left(a+5b\right)} and \frac{\left(a-5b\right)\left(a-5b\right)}{a\left(a-5b\right)\left(a+5b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+5ab+5ab+25b^{2}-a^{2}+5ab+5ab-25b^{2}}{a\left(a-5b\right)\left(a+5b\right)}\times \frac{25b^{2}-a^{2}}{5b^{2}}
Do the multiplications in \left(a+5b\right)\left(a+5b\right)-\left(a-5b\right)\left(a-5b\right).
\frac{20ab}{a\left(a-5b\right)\left(a+5b\right)}\times \frac{25b^{2}-a^{2}}{5b^{2}}
Combine like terms in a^{2}+5ab+5ab+25b^{2}-a^{2}+5ab+5ab-25b^{2}.
\frac{20b}{\left(a-5b\right)\left(a+5b\right)}\times \frac{25b^{2}-a^{2}}{5b^{2}}
Cancel out a in both numerator and denominator.
\frac{20b\left(25b^{2}-a^{2}\right)}{\left(a-5b\right)\left(a+5b\right)\times 5b^{2}}
Multiply \frac{20b}{\left(a-5b\right)\left(a+5b\right)} times \frac{25b^{2}-a^{2}}{5b^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{4\left(-a^{2}+25b^{2}\right)}{b\left(a-5b\right)\left(a+5b\right)}
Cancel out 5b in both numerator and denominator.
\frac{4\left(a-5b\right)\left(-a-5b\right)}{b\left(a-5b\right)\left(a+5b\right)}
Factor the expressions that are not already factored.
\frac{-4\left(a-5b\right)\left(a+5b\right)}{b\left(a-5b\right)\left(a+5b\right)}
Extract the negative sign in -a-5b.
\frac{-4}{b}
Cancel out \left(a-5b\right)\left(a+5b\right) in both numerator and denominator.
\left(\frac{a+5b}{a\left(a-5b\right)}-\frac{a-5b}{a\left(a+5b\right)}\right)\times \frac{25b^{2}-a^{2}}{5b^{2}}
Factor a^{2}-5ab. Factor a^{2}+5ab.
\left(\frac{\left(a+5b\right)\left(a+5b\right)}{a\left(a-5b\right)\left(a+5b\right)}-\frac{\left(a-5b\right)\left(a-5b\right)}{a\left(a-5b\right)\left(a+5b\right)}\right)\times \frac{25b^{2}-a^{2}}{5b^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-5b\right) and a\left(a+5b\right) is a\left(a-5b\right)\left(a+5b\right). Multiply \frac{a+5b}{a\left(a-5b\right)} times \frac{a+5b}{a+5b}. Multiply \frac{a-5b}{a\left(a+5b\right)} times \frac{a-5b}{a-5b}.
\frac{\left(a+5b\right)\left(a+5b\right)-\left(a-5b\right)\left(a-5b\right)}{a\left(a-5b\right)\left(a+5b\right)}\times \frac{25b^{2}-a^{2}}{5b^{2}}
Since \frac{\left(a+5b\right)\left(a+5b\right)}{a\left(a-5b\right)\left(a+5b\right)} and \frac{\left(a-5b\right)\left(a-5b\right)}{a\left(a-5b\right)\left(a+5b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+5ab+5ab+25b^{2}-a^{2}+5ab+5ab-25b^{2}}{a\left(a-5b\right)\left(a+5b\right)}\times \frac{25b^{2}-a^{2}}{5b^{2}}
Do the multiplications in \left(a+5b\right)\left(a+5b\right)-\left(a-5b\right)\left(a-5b\right).
\frac{20ab}{a\left(a-5b\right)\left(a+5b\right)}\times \frac{25b^{2}-a^{2}}{5b^{2}}
Combine like terms in a^{2}+5ab+5ab+25b^{2}-a^{2}+5ab+5ab-25b^{2}.
\frac{20b}{\left(a-5b\right)\left(a+5b\right)}\times \frac{25b^{2}-a^{2}}{5b^{2}}
Cancel out a in both numerator and denominator.
\frac{20b\left(25b^{2}-a^{2}\right)}{\left(a-5b\right)\left(a+5b\right)\times 5b^{2}}
Multiply \frac{20b}{\left(a-5b\right)\left(a+5b\right)} times \frac{25b^{2}-a^{2}}{5b^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{4\left(-a^{2}+25b^{2}\right)}{b\left(a-5b\right)\left(a+5b\right)}
Cancel out 5b in both numerator and denominator.
\frac{4\left(a-5b\right)\left(-a-5b\right)}{b\left(a-5b\right)\left(a+5b\right)}
Factor the expressions that are not already factored.
\frac{-4\left(a-5b\right)\left(a+5b\right)}{b\left(a-5b\right)\left(a+5b\right)}
Extract the negative sign in -a-5b.
\frac{-4}{b}
Cancel out \left(a-5b\right)\left(a+5b\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}