Evaluate
-\frac{a^{2}}{a^{2}-2a+4}
Expand
-\frac{a^{2}}{a^{2}-2a+4}
Share
Copied to clipboard
\frac{\frac{a+3}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{a-1}+1}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
Factor a^{2}-1.
\frac{\frac{a+3}{\left(a-1\right)\left(a+1\right)}-\frac{\left(a+1\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+1}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a+1\right) and a-1 is \left(a-1\right)\left(a+1\right). Multiply \frac{a+1}{a-1} times \frac{a+1}{a+1}.
\frac{\frac{a+3-\left(a+1\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+1}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
Since \frac{a+3}{\left(a-1\right)\left(a+1\right)} and \frac{\left(a+1\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a+3-a^{2}-a-a-1}{\left(a-1\right)\left(a+1\right)}+1}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
Do the multiplications in a+3-\left(a+1\right)\left(a+1\right).
\frac{\frac{-a+2-a^{2}}{\left(a-1\right)\left(a+1\right)}+1}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
Combine like terms in a+3-a^{2}-a-a-1.
\frac{\frac{\left(a+2\right)\left(-a+1\right)}{\left(a-1\right)\left(a+1\right)}+1}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
Factor the expressions that are not already factored in \frac{-a+2-a^{2}}{\left(a-1\right)\left(a+1\right)}.
\frac{\frac{-\left(a-1\right)\left(a+2\right)}{\left(a-1\right)\left(a+1\right)}+1}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
Extract the negative sign in 1-a.
\frac{\frac{-\left(a+2\right)}{a+1}+1}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
Cancel out a-1 in both numerator and denominator.
\frac{\frac{-\left(a+2\right)}{a+1}+\frac{a+1}{a+1}}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a+1}{a+1}.
\frac{\frac{-\left(a+2\right)+a+1}{a+1}}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
Since \frac{-\left(a+2\right)}{a+1} and \frac{a+1}{a+1} have the same denominator, add them by adding their numerators.
\frac{\frac{-a-2+a+1}{a+1}}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
Do the multiplications in -\left(a+2\right)+a+1.
\frac{\frac{-1}{a+1}}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
Combine like terms in -a-2+a+1.
\frac{\frac{-1}{a+1}}{\frac{\left(a+2\right)\left(a^{2}-2a+4\right)}{\left(a+1\right)\left(a+2\right)a^{2}}}
Factor the expressions that are not already factored in \frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}.
\frac{\frac{-1}{a+1}}{\frac{a^{2}-2a+4}{\left(a+1\right)a^{2}}}
Cancel out a+2 in both numerator and denominator.
\frac{-\left(a+1\right)a^{2}}{\left(a+1\right)\left(a^{2}-2a+4\right)}
Divide \frac{-1}{a+1} by \frac{a^{2}-2a+4}{\left(a+1\right)a^{2}} by multiplying \frac{-1}{a+1} by the reciprocal of \frac{a^{2}-2a+4}{\left(a+1\right)a^{2}}.
\frac{-a^{2}}{a^{2}-2a+4}
Cancel out a+1 in both numerator and denominator.
\frac{\frac{a+3}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{a-1}+1}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
Factor a^{2}-1.
\frac{\frac{a+3}{\left(a-1\right)\left(a+1\right)}-\frac{\left(a+1\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+1}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a+1\right) and a-1 is \left(a-1\right)\left(a+1\right). Multiply \frac{a+1}{a-1} times \frac{a+1}{a+1}.
\frac{\frac{a+3-\left(a+1\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+1}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
Since \frac{a+3}{\left(a-1\right)\left(a+1\right)} and \frac{\left(a+1\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a+3-a^{2}-a-a-1}{\left(a-1\right)\left(a+1\right)}+1}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
Do the multiplications in a+3-\left(a+1\right)\left(a+1\right).
\frac{\frac{-a+2-a^{2}}{\left(a-1\right)\left(a+1\right)}+1}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
Combine like terms in a+3-a^{2}-a-a-1.
\frac{\frac{\left(a+2\right)\left(-a+1\right)}{\left(a-1\right)\left(a+1\right)}+1}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
Factor the expressions that are not already factored in \frac{-a+2-a^{2}}{\left(a-1\right)\left(a+1\right)}.
\frac{\frac{-\left(a-1\right)\left(a+2\right)}{\left(a-1\right)\left(a+1\right)}+1}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
Extract the negative sign in 1-a.
\frac{\frac{-\left(a+2\right)}{a+1}+1}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
Cancel out a-1 in both numerator and denominator.
\frac{\frac{-\left(a+2\right)}{a+1}+\frac{a+1}{a+1}}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a+1}{a+1}.
\frac{\frac{-\left(a+2\right)+a+1}{a+1}}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
Since \frac{-\left(a+2\right)}{a+1} and \frac{a+1}{a+1} have the same denominator, add them by adding their numerators.
\frac{\frac{-a-2+a+1}{a+1}}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
Do the multiplications in -\left(a+2\right)+a+1.
\frac{\frac{-1}{a+1}}{\frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}}
Combine like terms in -a-2+a+1.
\frac{\frac{-1}{a+1}}{\frac{\left(a+2\right)\left(a^{2}-2a+4\right)}{\left(a+1\right)\left(a+2\right)a^{2}}}
Factor the expressions that are not already factored in \frac{a^{3}+8}{a^{4}+3a^{3}+2a^{2}}.
\frac{\frac{-1}{a+1}}{\frac{a^{2}-2a+4}{\left(a+1\right)a^{2}}}
Cancel out a+2 in both numerator and denominator.
\frac{-\left(a+1\right)a^{2}}{\left(a+1\right)\left(a^{2}-2a+4\right)}
Divide \frac{-1}{a+1} by \frac{a^{2}-2a+4}{\left(a+1\right)a^{2}} by multiplying \frac{-1}{a+1} by the reciprocal of \frac{a^{2}-2a+4}{\left(a+1\right)a^{2}}.
\frac{-a^{2}}{a^{2}-2a+4}
Cancel out a+1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}