Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{a+2}{a\left(a-2\right)}-\frac{a-1}{\left(a-2\right)^{2}}}{\frac{4-a}{a^{2}-2a}}
Factor a^{2}-2a. Factor a^{2}-4a+4.
\frac{\frac{\left(a+2\right)\left(a-2\right)}{a\left(a-2\right)^{2}}-\frac{\left(a-1\right)a}{a\left(a-2\right)^{2}}}{\frac{4-a}{a^{2}-2a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-2\right) and \left(a-2\right)^{2} is a\left(a-2\right)^{2}. Multiply \frac{a+2}{a\left(a-2\right)} times \frac{a-2}{a-2}. Multiply \frac{a-1}{\left(a-2\right)^{2}} times \frac{a}{a}.
\frac{\frac{\left(a+2\right)\left(a-2\right)-\left(a-1\right)a}{a\left(a-2\right)^{2}}}{\frac{4-a}{a^{2}-2a}}
Since \frac{\left(a+2\right)\left(a-2\right)}{a\left(a-2\right)^{2}} and \frac{\left(a-1\right)a}{a\left(a-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}-2a+2a-4-a^{2}+a}{a\left(a-2\right)^{2}}}{\frac{4-a}{a^{2}-2a}}
Do the multiplications in \left(a+2\right)\left(a-2\right)-\left(a-1\right)a.
\frac{\frac{a-4}{a\left(a-2\right)^{2}}}{\frac{4-a}{a^{2}-2a}}
Combine like terms in a^{2}-2a+2a-4-a^{2}+a.
\frac{\left(a-4\right)\left(a^{2}-2a\right)}{a\left(a-2\right)^{2}\left(4-a\right)}
Divide \frac{a-4}{a\left(a-2\right)^{2}} by \frac{4-a}{a^{2}-2a} by multiplying \frac{a-4}{a\left(a-2\right)^{2}} by the reciprocal of \frac{4-a}{a^{2}-2a}.
\frac{-\left(-a+4\right)\left(a^{2}-2a\right)}{a\left(-a+4\right)\left(a-2\right)^{2}}
Extract the negative sign in a-4.
\frac{-\left(a^{2}-2a\right)}{a\left(a-2\right)^{2}}
Cancel out -a+4 in both numerator and denominator.
\frac{-a\left(a-2\right)}{a\left(a-2\right)^{2}}
Factor the expressions that are not already factored.
\frac{-1}{a-2}
Cancel out a\left(a-2\right) in both numerator and denominator.
\frac{\frac{a+2}{a\left(a-2\right)}-\frac{a-1}{\left(a-2\right)^{2}}}{\frac{4-a}{a^{2}-2a}}
Factor a^{2}-2a. Factor a^{2}-4a+4.
\frac{\frac{\left(a+2\right)\left(a-2\right)}{a\left(a-2\right)^{2}}-\frac{\left(a-1\right)a}{a\left(a-2\right)^{2}}}{\frac{4-a}{a^{2}-2a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-2\right) and \left(a-2\right)^{2} is a\left(a-2\right)^{2}. Multiply \frac{a+2}{a\left(a-2\right)} times \frac{a-2}{a-2}. Multiply \frac{a-1}{\left(a-2\right)^{2}} times \frac{a}{a}.
\frac{\frac{\left(a+2\right)\left(a-2\right)-\left(a-1\right)a}{a\left(a-2\right)^{2}}}{\frac{4-a}{a^{2}-2a}}
Since \frac{\left(a+2\right)\left(a-2\right)}{a\left(a-2\right)^{2}} and \frac{\left(a-1\right)a}{a\left(a-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}-2a+2a-4-a^{2}+a}{a\left(a-2\right)^{2}}}{\frac{4-a}{a^{2}-2a}}
Do the multiplications in \left(a+2\right)\left(a-2\right)-\left(a-1\right)a.
\frac{\frac{a-4}{a\left(a-2\right)^{2}}}{\frac{4-a}{a^{2}-2a}}
Combine like terms in a^{2}-2a+2a-4-a^{2}+a.
\frac{\left(a-4\right)\left(a^{2}-2a\right)}{a\left(a-2\right)^{2}\left(4-a\right)}
Divide \frac{a-4}{a\left(a-2\right)^{2}} by \frac{4-a}{a^{2}-2a} by multiplying \frac{a-4}{a\left(a-2\right)^{2}} by the reciprocal of \frac{4-a}{a^{2}-2a}.
\frac{-\left(-a+4\right)\left(a^{2}-2a\right)}{a\left(-a+4\right)\left(a-2\right)^{2}}
Extract the negative sign in a-4.
\frac{-\left(a^{2}-2a\right)}{a\left(a-2\right)^{2}}
Cancel out -a+4 in both numerator and denominator.
\frac{-a\left(a-2\right)}{a\left(a-2\right)^{2}}
Factor the expressions that are not already factored.
\frac{-1}{a-2}
Cancel out a\left(a-2\right) in both numerator and denominator.