Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{a+2}{a\left(a-2\right)}+\frac{8}{\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Factor a^{2}-2a. Factor 4-a^{2}.
\frac{\frac{\left(a+2\right)\left(-a-2\right)}{a\left(a-2\right)\left(-a-2\right)}+\frac{8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-2\right) and \left(a-2\right)\left(-a-2\right) is a\left(a-2\right)\left(-a-2\right). Multiply \frac{a+2}{a\left(a-2\right)} times \frac{-a-2}{-a-2}. Multiply \frac{8}{\left(a-2\right)\left(-a-2\right)} times \frac{a}{a}.
\frac{\frac{\left(a+2\right)\left(-a-2\right)+8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Since \frac{\left(a+2\right)\left(-a-2\right)}{a\left(a-2\right)\left(-a-2\right)} and \frac{8a}{a\left(a-2\right)\left(-a-2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-a^{2}-2a-2a-4+8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Do the multiplications in \left(a+2\right)\left(-a-2\right)+8a.
\frac{\frac{-a^{2}+4a-4}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Combine like terms in -a^{2}-2a-2a-4+8a.
\frac{\frac{\left(a-2\right)\left(-a+2\right)}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Factor the expressions that are not already factored in \frac{-a^{2}+4a-4}{a\left(a-2\right)\left(-a-2\right)}.
\frac{\frac{-\left(a-2\right)\left(a-2\right)}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Extract the negative sign in 2-a.
\frac{\frac{-\left(a-2\right)}{a\left(-a-2\right)}}{\frac{a-2}{a}}
Cancel out a-2 in both numerator and denominator.
\frac{-\left(a-2\right)a}{a\left(-a-2\right)\left(a-2\right)}
Divide \frac{-\left(a-2\right)}{a\left(-a-2\right)} by \frac{a-2}{a} by multiplying \frac{-\left(a-2\right)}{a\left(-a-2\right)} by the reciprocal of \frac{a-2}{a}.
\frac{-1}{-a-2}
Cancel out a\left(a-2\right) in both numerator and denominator.
\frac{\frac{a+2}{a\left(a-2\right)}+\frac{8}{\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Factor a^{2}-2a. Factor 4-a^{2}.
\frac{\frac{\left(a+2\right)\left(-a-2\right)}{a\left(a-2\right)\left(-a-2\right)}+\frac{8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-2\right) and \left(a-2\right)\left(-a-2\right) is a\left(a-2\right)\left(-a-2\right). Multiply \frac{a+2}{a\left(a-2\right)} times \frac{-a-2}{-a-2}. Multiply \frac{8}{\left(a-2\right)\left(-a-2\right)} times \frac{a}{a}.
\frac{\frac{\left(a+2\right)\left(-a-2\right)+8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Since \frac{\left(a+2\right)\left(-a-2\right)}{a\left(a-2\right)\left(-a-2\right)} and \frac{8a}{a\left(a-2\right)\left(-a-2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-a^{2}-2a-2a-4+8a}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Do the multiplications in \left(a+2\right)\left(-a-2\right)+8a.
\frac{\frac{-a^{2}+4a-4}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Combine like terms in -a^{2}-2a-2a-4+8a.
\frac{\frac{\left(a-2\right)\left(-a+2\right)}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Factor the expressions that are not already factored in \frac{-a^{2}+4a-4}{a\left(a-2\right)\left(-a-2\right)}.
\frac{\frac{-\left(a-2\right)\left(a-2\right)}{a\left(a-2\right)\left(-a-2\right)}}{\frac{a-2}{a}}
Extract the negative sign in 2-a.
\frac{\frac{-\left(a-2\right)}{a\left(-a-2\right)}}{\frac{a-2}{a}}
Cancel out a-2 in both numerator and denominator.
\frac{-\left(a-2\right)a}{a\left(-a-2\right)\left(a-2\right)}
Divide \frac{-\left(a-2\right)}{a\left(-a-2\right)} by \frac{a-2}{a} by multiplying \frac{-\left(a-2\right)}{a\left(-a-2\right)} by the reciprocal of \frac{a-2}{a}.
\frac{-1}{-a-2}
Cancel out a\left(a-2\right) in both numerator and denominator.