Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{a+1}{a-1}+\frac{1}{\left(a-1\right)^{2}}}{\frac{a}{a-1}}
Factor a^{2}-2a+1.
\frac{\frac{\left(a+1\right)\left(a-1\right)}{\left(a-1\right)^{2}}+\frac{1}{\left(a-1\right)^{2}}}{\frac{a}{a-1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and \left(a-1\right)^{2} is \left(a-1\right)^{2}. Multiply \frac{a+1}{a-1} times \frac{a-1}{a-1}.
\frac{\frac{\left(a+1\right)\left(a-1\right)+1}{\left(a-1\right)^{2}}}{\frac{a}{a-1}}
Since \frac{\left(a+1\right)\left(a-1\right)}{\left(a-1\right)^{2}} and \frac{1}{\left(a-1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{2}-a+a-1+1}{\left(a-1\right)^{2}}}{\frac{a}{a-1}}
Do the multiplications in \left(a+1\right)\left(a-1\right)+1.
\frac{\frac{a^{2}}{\left(a-1\right)^{2}}}{\frac{a}{a-1}}
Combine like terms in a^{2}-a+a-1+1.
\frac{a^{2}\left(a-1\right)}{\left(a-1\right)^{2}a}
Divide \frac{a^{2}}{\left(a-1\right)^{2}} by \frac{a}{a-1} by multiplying \frac{a^{2}}{\left(a-1\right)^{2}} by the reciprocal of \frac{a}{a-1}.
\frac{a}{a-1}
Cancel out a\left(a-1\right) in both numerator and denominator.
\frac{\frac{a+1}{a-1}+\frac{1}{\left(a-1\right)^{2}}}{\frac{a}{a-1}}
Factor a^{2}-2a+1.
\frac{\frac{\left(a+1\right)\left(a-1\right)}{\left(a-1\right)^{2}}+\frac{1}{\left(a-1\right)^{2}}}{\frac{a}{a-1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and \left(a-1\right)^{2} is \left(a-1\right)^{2}. Multiply \frac{a+1}{a-1} times \frac{a-1}{a-1}.
\frac{\frac{\left(a+1\right)\left(a-1\right)+1}{\left(a-1\right)^{2}}}{\frac{a}{a-1}}
Since \frac{\left(a+1\right)\left(a-1\right)}{\left(a-1\right)^{2}} and \frac{1}{\left(a-1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{2}-a+a-1+1}{\left(a-1\right)^{2}}}{\frac{a}{a-1}}
Do the multiplications in \left(a+1\right)\left(a-1\right)+1.
\frac{\frac{a^{2}}{\left(a-1\right)^{2}}}{\frac{a}{a-1}}
Combine like terms in a^{2}-a+a-1+1.
\frac{a^{2}\left(a-1\right)}{\left(a-1\right)^{2}a}
Divide \frac{a^{2}}{\left(a-1\right)^{2}} by \frac{a}{a-1} by multiplying \frac{a^{2}}{\left(a-1\right)^{2}} by the reciprocal of \frac{a}{a-1}.
\frac{a}{a-1}
Cancel out a\left(a-1\right) in both numerator and denominator.