Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{a+1}{a\left(a^{2}-1\right)}+\frac{1}{a^{2}+3a}\times \frac{a+3}{a+1}\right)\times \frac{a+1}{2}
Multiply \frac{a+1}{a} times \frac{1}{a^{2}-1} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{a+1}{a\left(a^{2}-1\right)}+\frac{a+3}{\left(a^{2}+3a\right)\left(a+1\right)}\right)\times \frac{a+1}{2}
Multiply \frac{1}{a^{2}+3a} times \frac{a+3}{a+1} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{a+1}{a\left(a-1\right)\left(a+1\right)}+\frac{a+3}{a\left(a+1\right)\left(a+3\right)}\right)\times \frac{a+1}{2}
Factor a\left(a^{2}-1\right). Factor \left(a^{2}+3a\right)\left(a+1\right).
\left(\frac{\left(a+1\right)\left(a+3\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}+\frac{\left(a+3\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}\right)\times \frac{a+1}{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-1\right)\left(a+1\right) and a\left(a+1\right)\left(a+3\right) is a\left(a-1\right)\left(a+1\right)\left(a+3\right). Multiply \frac{a+1}{a\left(a-1\right)\left(a+1\right)} times \frac{a+3}{a+3}. Multiply \frac{a+3}{a\left(a+1\right)\left(a+3\right)} times \frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+3\right)+\left(a+3\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}\times \frac{a+1}{2}
Since \frac{\left(a+1\right)\left(a+3\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)} and \frac{\left(a+3\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}+3a+a+3+a^{2}-a+3a-3}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}\times \frac{a+1}{2}
Do the multiplications in \left(a+1\right)\left(a+3\right)+\left(a+3\right)\left(a-1\right).
\frac{2a^{2}+6a}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}\times \frac{a+1}{2}
Combine like terms in a^{2}+3a+a+3+a^{2}-a+3a-3.
\frac{2a\left(a+3\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}\times \frac{a+1}{2}
Factor the expressions that are not already factored in \frac{2a^{2}+6a}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}.
\frac{2}{\left(a-1\right)\left(a+1\right)}\times \frac{a+1}{2}
Cancel out a\left(a+3\right) in both numerator and denominator.
\frac{2\left(a+1\right)}{\left(a-1\right)\left(a+1\right)\times 2}
Multiply \frac{2}{\left(a-1\right)\left(a+1\right)} times \frac{a+1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{a-1}
Cancel out 2\left(a+1\right) in both numerator and denominator.
\left(\frac{a+1}{a\left(a^{2}-1\right)}+\frac{1}{a^{2}+3a}\times \frac{a+3}{a+1}\right)\times \frac{a+1}{2}
Multiply \frac{a+1}{a} times \frac{1}{a^{2}-1} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{a+1}{a\left(a^{2}-1\right)}+\frac{a+3}{\left(a^{2}+3a\right)\left(a+1\right)}\right)\times \frac{a+1}{2}
Multiply \frac{1}{a^{2}+3a} times \frac{a+3}{a+1} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{a+1}{a\left(a-1\right)\left(a+1\right)}+\frac{a+3}{a\left(a+1\right)\left(a+3\right)}\right)\times \frac{a+1}{2}
Factor a\left(a^{2}-1\right). Factor \left(a^{2}+3a\right)\left(a+1\right).
\left(\frac{\left(a+1\right)\left(a+3\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}+\frac{\left(a+3\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}\right)\times \frac{a+1}{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-1\right)\left(a+1\right) and a\left(a+1\right)\left(a+3\right) is a\left(a-1\right)\left(a+1\right)\left(a+3\right). Multiply \frac{a+1}{a\left(a-1\right)\left(a+1\right)} times \frac{a+3}{a+3}. Multiply \frac{a+3}{a\left(a+1\right)\left(a+3\right)} times \frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+3\right)+\left(a+3\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}\times \frac{a+1}{2}
Since \frac{\left(a+1\right)\left(a+3\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)} and \frac{\left(a+3\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}+3a+a+3+a^{2}-a+3a-3}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}\times \frac{a+1}{2}
Do the multiplications in \left(a+1\right)\left(a+3\right)+\left(a+3\right)\left(a-1\right).
\frac{2a^{2}+6a}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}\times \frac{a+1}{2}
Combine like terms in a^{2}+3a+a+3+a^{2}-a+3a-3.
\frac{2a\left(a+3\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}\times \frac{a+1}{2}
Factor the expressions that are not already factored in \frac{2a^{2}+6a}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}.
\frac{2}{\left(a-1\right)\left(a+1\right)}\times \frac{a+1}{2}
Cancel out a\left(a+3\right) in both numerator and denominator.
\frac{2\left(a+1\right)}{\left(a-1\right)\left(a+1\right)\times 2}
Multiply \frac{2}{\left(a-1\right)\left(a+1\right)} times \frac{a+1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{a-1}
Cancel out 2\left(a+1\right) in both numerator and denominator.