Evaluate
\frac{1}{a-1}
Expand
\frac{1}{a-1}
Share
Copied to clipboard
\left(\frac{a+1}{a\left(a^{2}-1\right)}+\frac{1}{a^{2}+3a}\times \frac{a+3}{a+1}\right)\times \frac{a+1}{2}
Multiply \frac{a+1}{a} times \frac{1}{a^{2}-1} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{a+1}{a\left(a^{2}-1\right)}+\frac{a+3}{\left(a^{2}+3a\right)\left(a+1\right)}\right)\times \frac{a+1}{2}
Multiply \frac{1}{a^{2}+3a} times \frac{a+3}{a+1} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{a+1}{a\left(a-1\right)\left(a+1\right)}+\frac{a+3}{a\left(a+1\right)\left(a+3\right)}\right)\times \frac{a+1}{2}
Factor a\left(a^{2}-1\right). Factor \left(a^{2}+3a\right)\left(a+1\right).
\left(\frac{\left(a+1\right)\left(a+3\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}+\frac{\left(a+3\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}\right)\times \frac{a+1}{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-1\right)\left(a+1\right) and a\left(a+1\right)\left(a+3\right) is a\left(a-1\right)\left(a+1\right)\left(a+3\right). Multiply \frac{a+1}{a\left(a-1\right)\left(a+1\right)} times \frac{a+3}{a+3}. Multiply \frac{a+3}{a\left(a+1\right)\left(a+3\right)} times \frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+3\right)+\left(a+3\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}\times \frac{a+1}{2}
Since \frac{\left(a+1\right)\left(a+3\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)} and \frac{\left(a+3\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}+3a+a+3+a^{2}-a+3a-3}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}\times \frac{a+1}{2}
Do the multiplications in \left(a+1\right)\left(a+3\right)+\left(a+3\right)\left(a-1\right).
\frac{2a^{2}+6a}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}\times \frac{a+1}{2}
Combine like terms in a^{2}+3a+a+3+a^{2}-a+3a-3.
\frac{2a\left(a+3\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}\times \frac{a+1}{2}
Factor the expressions that are not already factored in \frac{2a^{2}+6a}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}.
\frac{2}{\left(a-1\right)\left(a+1\right)}\times \frac{a+1}{2}
Cancel out a\left(a+3\right) in both numerator and denominator.
\frac{2\left(a+1\right)}{\left(a-1\right)\left(a+1\right)\times 2}
Multiply \frac{2}{\left(a-1\right)\left(a+1\right)} times \frac{a+1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{a-1}
Cancel out 2\left(a+1\right) in both numerator and denominator.
\left(\frac{a+1}{a\left(a^{2}-1\right)}+\frac{1}{a^{2}+3a}\times \frac{a+3}{a+1}\right)\times \frac{a+1}{2}
Multiply \frac{a+1}{a} times \frac{1}{a^{2}-1} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{a+1}{a\left(a^{2}-1\right)}+\frac{a+3}{\left(a^{2}+3a\right)\left(a+1\right)}\right)\times \frac{a+1}{2}
Multiply \frac{1}{a^{2}+3a} times \frac{a+3}{a+1} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{a+1}{a\left(a-1\right)\left(a+1\right)}+\frac{a+3}{a\left(a+1\right)\left(a+3\right)}\right)\times \frac{a+1}{2}
Factor a\left(a^{2}-1\right). Factor \left(a^{2}+3a\right)\left(a+1\right).
\left(\frac{\left(a+1\right)\left(a+3\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}+\frac{\left(a+3\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}\right)\times \frac{a+1}{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-1\right)\left(a+1\right) and a\left(a+1\right)\left(a+3\right) is a\left(a-1\right)\left(a+1\right)\left(a+3\right). Multiply \frac{a+1}{a\left(a-1\right)\left(a+1\right)} times \frac{a+3}{a+3}. Multiply \frac{a+3}{a\left(a+1\right)\left(a+3\right)} times \frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+3\right)+\left(a+3\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}\times \frac{a+1}{2}
Since \frac{\left(a+1\right)\left(a+3\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)} and \frac{\left(a+3\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}+3a+a+3+a^{2}-a+3a-3}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}\times \frac{a+1}{2}
Do the multiplications in \left(a+1\right)\left(a+3\right)+\left(a+3\right)\left(a-1\right).
\frac{2a^{2}+6a}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}\times \frac{a+1}{2}
Combine like terms in a^{2}+3a+a+3+a^{2}-a+3a-3.
\frac{2a\left(a+3\right)}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}\times \frac{a+1}{2}
Factor the expressions that are not already factored in \frac{2a^{2}+6a}{a\left(a-1\right)\left(a+1\right)\left(a+3\right)}.
\frac{2}{\left(a-1\right)\left(a+1\right)}\times \frac{a+1}{2}
Cancel out a\left(a+3\right) in both numerator and denominator.
\frac{2\left(a+1\right)}{\left(a-1\right)\left(a+1\right)\times 2}
Multiply \frac{2}{\left(a-1\right)\left(a+1\right)} times \frac{a+1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{a-1}
Cancel out 2\left(a+1\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}