Solve for X
X = \frac{1168091 \sqrt{15}}{625} \approx 7238.395183768
Share
Copied to clipboard
\frac{X\sqrt{15}}{\left(\sqrt{15}\right)^{2}}=1868.9456
Rationalize the denominator of \frac{X}{\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{X\sqrt{15}}{15}=1868.9456
The square of \sqrt{15} is 15.
X\sqrt{15}=1868.9456\times 15
Multiply both sides by 15.
X\sqrt{15}=28034.184
Multiply 1868.9456 and 15 to get 28034.184.
\sqrt{15}X=28034.184
The equation is in standard form.
\frac{\sqrt{15}X}{\sqrt{15}}=\frac{28034.184}{\sqrt{15}}
Divide both sides by \sqrt{15}.
X=\frac{28034.184}{\sqrt{15}}
Dividing by \sqrt{15} undoes the multiplication by \sqrt{15}.
X=\frac{1168091\sqrt{15}}{625}
Divide 28034.184 by \sqrt{15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}