Evaluate
\frac{S^{3}}{R^{4}Q^{7}}
Differentiate w.r.t. R
-\frac{4S^{3}}{R^{5}Q^{7}}
Share
Copied to clipboard
\left(\frac{S^{-2}R^{4}Q^{7}}{S}\right)^{-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\left(\frac{R^{4}Q^{7}}{S^{3}}\right)^{-1}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(R^{4}Q^{7}\right)^{-1}}{\left(S^{3}\right)^{-1}}
To raise \frac{R^{4}Q^{7}}{S^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(R^{4}Q^{7}\right)^{-1}}{S^{-3}}
To raise a power to another power, multiply the exponents. Multiply 3 and -1 to get -3.
\frac{\left(R^{4}\right)^{-1}\left(Q^{7}\right)^{-1}}{S^{-3}}
Expand \left(R^{4}Q^{7}\right)^{-1}.
\frac{R^{-4}\left(Q^{7}\right)^{-1}}{S^{-3}}
To raise a power to another power, multiply the exponents. Multiply 4 and -1 to get -4.
\frac{R^{-4}Q^{-7}}{S^{-3}}
To raise a power to another power, multiply the exponents. Multiply 7 and -1 to get -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}