Solve for a
\left\{\begin{matrix}\\a=3\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&h=0\end{matrix}\right.
Solve for h
\left\{\begin{matrix}\\h=0\text{, }&\text{unconditionally}\\h\in \mathrm{R}\text{, }&a=3\end{matrix}\right.
Share
Copied to clipboard
2\times \frac{9h}{2}=3ah
Multiply both sides of the equation by 6, the least common multiple of 3,2.
\frac{2\times 9h}{2}=3ah
Express 2\times \frac{9h}{2} as a single fraction.
9h=3ah
Cancel out 2 and 2.
3ah=9h
Swap sides so that all variable terms are on the left hand side.
3ha=9h
The equation is in standard form.
\frac{3ha}{3h}=\frac{9h}{3h}
Divide both sides by 3h.
a=\frac{9h}{3h}
Dividing by 3h undoes the multiplication by 3h.
a=3
Divide 9h by 3h.
2\times \frac{9h}{2}=3ah
Multiply both sides of the equation by 6, the least common multiple of 3,2.
\frac{2\times 9h}{2}=3ah
Express 2\times \frac{9h}{2} as a single fraction.
9h=3ah
Cancel out 2 and 2.
9h-3ah=0
Subtract 3ah from both sides.
\left(9-3a\right)h=0
Combine all terms containing h.
h=0
Divide 0 by 9-3a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}