Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\left(9c^{5}\right)^{-2}}{\left(a^{3}b^{-2}\right)^{-2}}}{\left(\frac{a^{2}b^{-3}}{6c^{4}}\right)^{3}}
To raise \frac{9c^{5}}{a^{3}b^{-2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(9c^{5}\right)^{-2}}{\left(a^{3}b^{-2}\right)^{-2}}}{\frac{\left(a^{2}b^{-3}\right)^{3}}{\left(6c^{4}\right)^{3}}}
To raise \frac{a^{2}b^{-3}}{6c^{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(9c^{5}\right)^{-2}\times \left(6c^{4}\right)^{3}}{\left(a^{3}b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
Divide \frac{\left(9c^{5}\right)^{-2}}{\left(a^{3}b^{-2}\right)^{-2}} by \frac{\left(a^{2}b^{-3}\right)^{3}}{\left(6c^{4}\right)^{3}} by multiplying \frac{\left(9c^{5}\right)^{-2}}{\left(a^{3}b^{-2}\right)^{-2}} by the reciprocal of \frac{\left(a^{2}b^{-3}\right)^{3}}{\left(6c^{4}\right)^{3}}.
\frac{9^{-2}\left(c^{5}\right)^{-2}\times \left(6c^{4}\right)^{3}}{\left(a^{3}b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
Expand \left(9c^{5}\right)^{-2}.
\frac{9^{-2}c^{-10}\times \left(6c^{4}\right)^{3}}{\left(a^{3}b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 5 and -2 to get -10.
\frac{\frac{1}{81}c^{-10}\times \left(6c^{4}\right)^{3}}{\left(a^{3}b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
Calculate 9 to the power of -2 and get \frac{1}{81}.
\frac{\frac{1}{81}c^{-10}\times 6^{3}\left(c^{4}\right)^{3}}{\left(a^{3}b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
Expand \left(6c^{4}\right)^{3}.
\frac{\frac{1}{81}c^{-10}\times 6^{3}c^{12}}{\left(a^{3}b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{\frac{1}{81}c^{-10}\times 216c^{12}}{\left(a^{3}b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
Calculate 6 to the power of 3 and get 216.
\frac{\frac{8}{3}c^{-10}c^{12}}{\left(a^{3}b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
Multiply \frac{1}{81} and 216 to get \frac{8}{3}.
\frac{\frac{8}{3}c^{2}}{\left(a^{3}b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
To multiply powers of the same base, add their exponents. Add -10 and 12 to get 2.
\frac{\frac{8}{3}c^{2}}{\left(a^{3}\right)^{-2}\left(b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
Expand \left(a^{3}b^{-2}\right)^{-2}.
\frac{\frac{8}{3}c^{2}}{a^{-6}\left(b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{\frac{8}{3}c^{2}}{a^{-6}b^{4}\left(a^{2}b^{-3}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply -2 and -2 to get 4.
\frac{\frac{8}{3}c^{2}}{a^{-6}b^{4}\left(a^{2}\right)^{3}\left(b^{-3}\right)^{3}}
Expand \left(a^{2}b^{-3}\right)^{3}.
\frac{\frac{8}{3}c^{2}}{a^{-6}b^{4}a^{6}\left(b^{-3}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{8}{3}c^{2}}{a^{-6}b^{4}a^{6}b^{-9}}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\frac{\frac{8}{3}c^{2}}{b^{4}b^{-9}}
Multiply a^{-6} and a^{6} to get 1.
\frac{\frac{8}{3}c^{2}}{b^{-5}}
To multiply powers of the same base, add their exponents. Add 4 and -9 to get -5.
\frac{\frac{\left(9c^{5}\right)^{-2}}{\left(a^{3}b^{-2}\right)^{-2}}}{\left(\frac{a^{2}b^{-3}}{6c^{4}}\right)^{3}}
To raise \frac{9c^{5}}{a^{3}b^{-2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(9c^{5}\right)^{-2}}{\left(a^{3}b^{-2}\right)^{-2}}}{\frac{\left(a^{2}b^{-3}\right)^{3}}{\left(6c^{4}\right)^{3}}}
To raise \frac{a^{2}b^{-3}}{6c^{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(9c^{5}\right)^{-2}\times \left(6c^{4}\right)^{3}}{\left(a^{3}b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
Divide \frac{\left(9c^{5}\right)^{-2}}{\left(a^{3}b^{-2}\right)^{-2}} by \frac{\left(a^{2}b^{-3}\right)^{3}}{\left(6c^{4}\right)^{3}} by multiplying \frac{\left(9c^{5}\right)^{-2}}{\left(a^{3}b^{-2}\right)^{-2}} by the reciprocal of \frac{\left(a^{2}b^{-3}\right)^{3}}{\left(6c^{4}\right)^{3}}.
\frac{9^{-2}\left(c^{5}\right)^{-2}\times \left(6c^{4}\right)^{3}}{\left(a^{3}b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
Expand \left(9c^{5}\right)^{-2}.
\frac{9^{-2}c^{-10}\times \left(6c^{4}\right)^{3}}{\left(a^{3}b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 5 and -2 to get -10.
\frac{\frac{1}{81}c^{-10}\times \left(6c^{4}\right)^{3}}{\left(a^{3}b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
Calculate 9 to the power of -2 and get \frac{1}{81}.
\frac{\frac{1}{81}c^{-10}\times 6^{3}\left(c^{4}\right)^{3}}{\left(a^{3}b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
Expand \left(6c^{4}\right)^{3}.
\frac{\frac{1}{81}c^{-10}\times 6^{3}c^{12}}{\left(a^{3}b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{\frac{1}{81}c^{-10}\times 216c^{12}}{\left(a^{3}b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
Calculate 6 to the power of 3 and get 216.
\frac{\frac{8}{3}c^{-10}c^{12}}{\left(a^{3}b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
Multiply \frac{1}{81} and 216 to get \frac{8}{3}.
\frac{\frac{8}{3}c^{2}}{\left(a^{3}b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
To multiply powers of the same base, add their exponents. Add -10 and 12 to get 2.
\frac{\frac{8}{3}c^{2}}{\left(a^{3}\right)^{-2}\left(b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
Expand \left(a^{3}b^{-2}\right)^{-2}.
\frac{\frac{8}{3}c^{2}}{a^{-6}\left(b^{-2}\right)^{-2}\left(a^{2}b^{-3}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{\frac{8}{3}c^{2}}{a^{-6}b^{4}\left(a^{2}b^{-3}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply -2 and -2 to get 4.
\frac{\frac{8}{3}c^{2}}{a^{-6}b^{4}\left(a^{2}\right)^{3}\left(b^{-3}\right)^{3}}
Expand \left(a^{2}b^{-3}\right)^{3}.
\frac{\frac{8}{3}c^{2}}{a^{-6}b^{4}a^{6}\left(b^{-3}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{8}{3}c^{2}}{a^{-6}b^{4}a^{6}b^{-9}}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\frac{\frac{8}{3}c^{2}}{b^{4}b^{-9}}
Multiply a^{-6} and a^{6} to get 1.
\frac{\frac{8}{3}c^{2}}{b^{-5}}
To multiply powers of the same base, add their exponents. Add 4 and -9 to get -5.