Evaluate
\frac{3b^{5}}{8}
Expand
\frac{3b^{5}}{8}
Share
Copied to clipboard
\left(\frac{9b}{8}\right)^{2}\times \left(\frac{2b^{4}}{3b^{3}}\right)^{3}
Cancel out b^{3} in both numerator and denominator.
\frac{\left(9b\right)^{2}}{8^{2}}\times \left(\frac{2b^{4}}{3b^{3}}\right)^{3}
To raise \frac{9b}{8} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(9b\right)^{2}}{8^{2}}\times \left(\frac{2b}{3}\right)^{3}
Cancel out b^{3} in both numerator and denominator.
\frac{\left(9b\right)^{2}}{8^{2}}\times \frac{\left(2b\right)^{3}}{3^{3}}
To raise \frac{2b}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(9b\right)^{2}\times \left(2b\right)^{3}}{8^{2}\times 3^{3}}
Multiply \frac{\left(9b\right)^{2}}{8^{2}} times \frac{\left(2b\right)^{3}}{3^{3}} by multiplying numerator times numerator and denominator times denominator.
\frac{9^{2}b^{2}\times \left(2b\right)^{3}}{8^{2}\times 3^{3}}
Expand \left(9b\right)^{2}.
\frac{81b^{2}\times \left(2b\right)^{3}}{8^{2}\times 3^{3}}
Calculate 9 to the power of 2 and get 81.
\frac{81b^{2}\times 2^{3}b^{3}}{8^{2}\times 3^{3}}
Expand \left(2b\right)^{3}.
\frac{81b^{2}\times 8b^{3}}{8^{2}\times 3^{3}}
Calculate 2 to the power of 3 and get 8.
\frac{648b^{2}b^{3}}{8^{2}\times 3^{3}}
Multiply 81 and 8 to get 648.
\frac{648b^{5}}{8^{2}\times 3^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{648b^{5}}{64\times 3^{3}}
Calculate 8 to the power of 2 and get 64.
\frac{648b^{5}}{64\times 27}
Calculate 3 to the power of 3 and get 27.
\frac{648b^{5}}{1728}
Multiply 64 and 27 to get 1728.
\frac{3}{8}b^{5}
Divide 648b^{5} by 1728 to get \frac{3}{8}b^{5}.
\left(\frac{9b}{8}\right)^{2}\times \left(\frac{2b^{4}}{3b^{3}}\right)^{3}
Cancel out b^{3} in both numerator and denominator.
\frac{\left(9b\right)^{2}}{8^{2}}\times \left(\frac{2b^{4}}{3b^{3}}\right)^{3}
To raise \frac{9b}{8} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(9b\right)^{2}}{8^{2}}\times \left(\frac{2b}{3}\right)^{3}
Cancel out b^{3} in both numerator and denominator.
\frac{\left(9b\right)^{2}}{8^{2}}\times \frac{\left(2b\right)^{3}}{3^{3}}
To raise \frac{2b}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(9b\right)^{2}\times \left(2b\right)^{3}}{8^{2}\times 3^{3}}
Multiply \frac{\left(9b\right)^{2}}{8^{2}} times \frac{\left(2b\right)^{3}}{3^{3}} by multiplying numerator times numerator and denominator times denominator.
\frac{9^{2}b^{2}\times \left(2b\right)^{3}}{8^{2}\times 3^{3}}
Expand \left(9b\right)^{2}.
\frac{81b^{2}\times \left(2b\right)^{3}}{8^{2}\times 3^{3}}
Calculate 9 to the power of 2 and get 81.
\frac{81b^{2}\times 2^{3}b^{3}}{8^{2}\times 3^{3}}
Expand \left(2b\right)^{3}.
\frac{81b^{2}\times 8b^{3}}{8^{2}\times 3^{3}}
Calculate 2 to the power of 3 and get 8.
\frac{648b^{2}b^{3}}{8^{2}\times 3^{3}}
Multiply 81 and 8 to get 648.
\frac{648b^{5}}{8^{2}\times 3^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{648b^{5}}{64\times 3^{3}}
Calculate 8 to the power of 2 and get 64.
\frac{648b^{5}}{64\times 27}
Calculate 3 to the power of 3 and get 27.
\frac{648b^{5}}{1728}
Multiply 64 and 27 to get 1728.
\frac{3}{8}b^{5}
Divide 648b^{5} by 1728 to get \frac{3}{8}b^{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}