Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{9b}{8}\right)^{2}\times \left(\frac{2b^{4}}{3b^{3}}\right)^{3}
Cancel out b^{3} in both numerator and denominator.
\frac{\left(9b\right)^{2}}{8^{2}}\times \left(\frac{2b^{4}}{3b^{3}}\right)^{3}
To raise \frac{9b}{8} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(9b\right)^{2}}{8^{2}}\times \left(\frac{2b}{3}\right)^{3}
Cancel out b^{3} in both numerator and denominator.
\frac{\left(9b\right)^{2}}{8^{2}}\times \frac{\left(2b\right)^{3}}{3^{3}}
To raise \frac{2b}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(9b\right)^{2}\times \left(2b\right)^{3}}{8^{2}\times 3^{3}}
Multiply \frac{\left(9b\right)^{2}}{8^{2}} times \frac{\left(2b\right)^{3}}{3^{3}} by multiplying numerator times numerator and denominator times denominator.
\frac{9^{2}b^{2}\times \left(2b\right)^{3}}{8^{2}\times 3^{3}}
Expand \left(9b\right)^{2}.
\frac{81b^{2}\times \left(2b\right)^{3}}{8^{2}\times 3^{3}}
Calculate 9 to the power of 2 and get 81.
\frac{81b^{2}\times 2^{3}b^{3}}{8^{2}\times 3^{3}}
Expand \left(2b\right)^{3}.
\frac{81b^{2}\times 8b^{3}}{8^{2}\times 3^{3}}
Calculate 2 to the power of 3 and get 8.
\frac{648b^{2}b^{3}}{8^{2}\times 3^{3}}
Multiply 81 and 8 to get 648.
\frac{648b^{5}}{8^{2}\times 3^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{648b^{5}}{64\times 3^{3}}
Calculate 8 to the power of 2 and get 64.
\frac{648b^{5}}{64\times 27}
Calculate 3 to the power of 3 and get 27.
\frac{648b^{5}}{1728}
Multiply 64 and 27 to get 1728.
\frac{3}{8}b^{5}
Divide 648b^{5} by 1728 to get \frac{3}{8}b^{5}.
\left(\frac{9b}{8}\right)^{2}\times \left(\frac{2b^{4}}{3b^{3}}\right)^{3}
Cancel out b^{3} in both numerator and denominator.
\frac{\left(9b\right)^{2}}{8^{2}}\times \left(\frac{2b^{4}}{3b^{3}}\right)^{3}
To raise \frac{9b}{8} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(9b\right)^{2}}{8^{2}}\times \left(\frac{2b}{3}\right)^{3}
Cancel out b^{3} in both numerator and denominator.
\frac{\left(9b\right)^{2}}{8^{2}}\times \frac{\left(2b\right)^{3}}{3^{3}}
To raise \frac{2b}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(9b\right)^{2}\times \left(2b\right)^{3}}{8^{2}\times 3^{3}}
Multiply \frac{\left(9b\right)^{2}}{8^{2}} times \frac{\left(2b\right)^{3}}{3^{3}} by multiplying numerator times numerator and denominator times denominator.
\frac{9^{2}b^{2}\times \left(2b\right)^{3}}{8^{2}\times 3^{3}}
Expand \left(9b\right)^{2}.
\frac{81b^{2}\times \left(2b\right)^{3}}{8^{2}\times 3^{3}}
Calculate 9 to the power of 2 and get 81.
\frac{81b^{2}\times 2^{3}b^{3}}{8^{2}\times 3^{3}}
Expand \left(2b\right)^{3}.
\frac{81b^{2}\times 8b^{3}}{8^{2}\times 3^{3}}
Calculate 2 to the power of 3 and get 8.
\frac{648b^{2}b^{3}}{8^{2}\times 3^{3}}
Multiply 81 and 8 to get 648.
\frac{648b^{5}}{8^{2}\times 3^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{648b^{5}}{64\times 3^{3}}
Calculate 8 to the power of 2 and get 64.
\frac{648b^{5}}{64\times 27}
Calculate 3 to the power of 3 and get 27.
\frac{648b^{5}}{1728}
Multiply 64 and 27 to get 1728.
\frac{3}{8}b^{5}
Divide 648b^{5} by 1728 to get \frac{3}{8}b^{5}.