Differentiate w.r.t. b
\frac{3\times \left(\frac{3}{a}\right)^{\frac{3}{4}}\sqrt{|b|}sign(b)}{2}
Evaluate
\left(\frac{3}{a}\right)^{\frac{3}{4}}\left(|b|\right)^{\frac{3}{2}}
Share
Copied to clipboard
\frac{3}{4}\times \left(\frac{9b^{3}}{3ab^{1}}\right)^{\frac{3}{4}-1}\frac{\mathrm{d}}{\mathrm{d}b}(\frac{9b^{3}}{3ab^{1}})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{\frac{3}{4}\times \left(\frac{9b^{3}}{3ab^{1}}\right)^{\frac{3}{4}-1}\left(3ab^{1}\frac{\mathrm{d}}{\mathrm{d}b}(9b^{3})-9b^{3}\frac{\mathrm{d}}{\mathrm{d}b}(3ab^{1})\right)}{\left(3ab^{1}\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\frac{3}{4}\times \left(\frac{9b^{3}}{3ab^{1}}\right)^{\frac{3}{4}-1}\left(3ab^{1}\times 3\times 9b^{3-1}-9b^{3}\times 3ab^{1-1}\right)}{\left(3ab^{1}\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\frac{3}{4}\times \left(\frac{9b^{3}}{3ab^{1}}\right)^{-\frac{1}{4}}\left(81ab^{1}b^{2}-9b^{3}\times 3ab^{1-1}\right)}{\left(3ab^{1}\right)^{2}}
Multiply 3ab^{1} times 3\times 9b^{3-1}.
\frac{\frac{3}{4}\times \left(\frac{9b^{3}}{3ab^{1}}\right)^{-\frac{1}{4}}\left(81ab^{3}-27ab^{3}b^{0}\right)}{\left(3ab^{1}\right)^{2}}
Multiply 9b^{3} times 3ab^{1-1}.
\frac{\frac{3}{4}\times \left(\frac{9b^{3}}{3ab^{1}}\right)^{-\frac{1}{4}}\left(81ab^{3}-27ab^{3}\right)}{\left(3ab^{1}\right)^{2}}
Simplify.
\frac{\frac{3}{4}\times \left(\frac{9b^{3}}{3ab}\right)^{-\frac{1}{4}}\left(81ab^{3}-27ab^{3}\right)}{\left(3ab\right)^{2}}
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}