Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{9a^{2}}{b^{2}}-\frac{b^{2}}{b^{2}}\right)\left(\frac{6a}{3a-b}-2\right)\times \frac{b}{3a+b}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b^{2}}{b^{2}}.
\frac{9a^{2}-b^{2}}{b^{2}}\left(\frac{6a}{3a-b}-2\right)\times \frac{b}{3a+b}
Since \frac{9a^{2}}{b^{2}} and \frac{b^{2}}{b^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{9a^{2}-b^{2}}{b^{2}}\left(\frac{6a}{3a-b}-\frac{2\left(3a-b\right)}{3a-b}\right)\times \frac{b}{3a+b}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{3a-b}{3a-b}.
\frac{9a^{2}-b^{2}}{b^{2}}\times \frac{6a-2\left(3a-b\right)}{3a-b}\times \frac{b}{3a+b}
Since \frac{6a}{3a-b} and \frac{2\left(3a-b\right)}{3a-b} have the same denominator, subtract them by subtracting their numerators.
\frac{9a^{2}-b^{2}}{b^{2}}\times \frac{6a-6a+2b}{3a-b}\times \frac{b}{3a+b}
Do the multiplications in 6a-2\left(3a-b\right).
\frac{9a^{2}-b^{2}}{b^{2}}\times \frac{2b}{3a-b}\times \frac{b}{3a+b}
Combine like terms in 6a-6a+2b.
\frac{\left(9a^{2}-b^{2}\right)\times 2b}{b^{2}\left(3a-b\right)}\times \frac{b}{3a+b}
Multiply \frac{9a^{2}-b^{2}}{b^{2}} times \frac{2b}{3a-b} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(9a^{2}-b^{2}\right)}{b\left(3a-b\right)}\times \frac{b}{3a+b}
Cancel out b in both numerator and denominator.
\frac{2\left(9a^{2}-b^{2}\right)b}{b\left(3a-b\right)\left(3a+b\right)}
Multiply \frac{2\left(9a^{2}-b^{2}\right)}{b\left(3a-b\right)} times \frac{b}{3a+b} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(9a^{2}-b^{2}\right)}{\left(3a+b\right)\left(3a-b\right)}
Cancel out b in both numerator and denominator.
\frac{2\left(3a+b\right)\left(3a-b\right)}{\left(3a+b\right)\left(3a-b\right)}
Factor the expressions that are not already factored.
2
Cancel out \left(3a+b\right)\left(3a-b\right) in both numerator and denominator.