Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\left(3a+b\right)^{2}}{\left(3a+b\right)\left(3a-b\right)}-\frac{2a^{2}}{3a^{2}-ab}}{\frac{a^{2}+2ab+b}{b-3a}}
Factor the expressions that are not already factored in \frac{9a^{2}+6ab+b^{2}}{9a^{2}-b^{2}}.
\frac{\frac{3a+b}{3a-b}-\frac{2a^{2}}{3a^{2}-ab}}{\frac{a^{2}+2ab+b}{b-3a}}
Cancel out 3a+b in both numerator and denominator.
\frac{\frac{3a+b}{3a-b}-\frac{2a^{2}}{a\left(3a-b\right)}}{\frac{a^{2}+2ab+b}{b-3a}}
Factor the expressions that are not already factored in \frac{2a^{2}}{3a^{2}-ab}.
\frac{\frac{3a+b}{3a-b}-\frac{2a}{3a-b}}{\frac{a^{2}+2ab+b}{b-3a}}
Cancel out a in both numerator and denominator.
\frac{\frac{3a+b-2a}{3a-b}}{\frac{a^{2}+2ab+b}{b-3a}}
Since \frac{3a+b}{3a-b} and \frac{2a}{3a-b} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a+b}{3a-b}}{\frac{a^{2}+2ab+b}{b-3a}}
Combine like terms in 3a+b-2a.
\frac{\left(a+b\right)\left(b-3a\right)}{\left(3a-b\right)\left(a^{2}+2ab+b\right)}
Divide \frac{a+b}{3a-b} by \frac{a^{2}+2ab+b}{b-3a} by multiplying \frac{a+b}{3a-b} by the reciprocal of \frac{a^{2}+2ab+b}{b-3a}.
\frac{-\left(a+b\right)\left(3a-b\right)}{\left(3a-b\right)\left(a^{2}+2ab+b\right)}
Extract the negative sign in b-3a.
\frac{-\left(a+b\right)}{a^{2}+2ab+b}
Cancel out 3a-b in both numerator and denominator.
\frac{-a-b}{a^{2}+2ab+b}
To find the opposite of a+b, find the opposite of each term.
\frac{\frac{\left(3a+b\right)^{2}}{\left(3a+b\right)\left(3a-b\right)}-\frac{2a^{2}}{3a^{2}-ab}}{\frac{a^{2}+2ab+b}{b-3a}}
Factor the expressions that are not already factored in \frac{9a^{2}+6ab+b^{2}}{9a^{2}-b^{2}}.
\frac{\frac{3a+b}{3a-b}-\frac{2a^{2}}{3a^{2}-ab}}{\frac{a^{2}+2ab+b}{b-3a}}
Cancel out 3a+b in both numerator and denominator.
\frac{\frac{3a+b}{3a-b}-\frac{2a^{2}}{a\left(3a-b\right)}}{\frac{a^{2}+2ab+b}{b-3a}}
Factor the expressions that are not already factored in \frac{2a^{2}}{3a^{2}-ab}.
\frac{\frac{3a+b}{3a-b}-\frac{2a}{3a-b}}{\frac{a^{2}+2ab+b}{b-3a}}
Cancel out a in both numerator and denominator.
\frac{\frac{3a+b-2a}{3a-b}}{\frac{a^{2}+2ab+b}{b-3a}}
Since \frac{3a+b}{3a-b} and \frac{2a}{3a-b} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a+b}{3a-b}}{\frac{a^{2}+2ab+b}{b-3a}}
Combine like terms in 3a+b-2a.
\frac{\left(a+b\right)\left(b-3a\right)}{\left(3a-b\right)\left(a^{2}+2ab+b\right)}
Divide \frac{a+b}{3a-b} by \frac{a^{2}+2ab+b}{b-3a} by multiplying \frac{a+b}{3a-b} by the reciprocal of \frac{a^{2}+2ab+b}{b-3a}.
\frac{-\left(a+b\right)\left(3a-b\right)}{\left(3a-b\right)\left(a^{2}+2ab+b\right)}
Extract the negative sign in b-3a.
\frac{-\left(a+b\right)}{a^{2}+2ab+b}
Cancel out 3a-b in both numerator and denominator.
\frac{-a-b}{a^{2}+2ab+b}
To find the opposite of a+b, find the opposite of each term.