Evaluate
-\frac{a+b}{a^{2}+2ab+b}
Expand
-\frac{a+b}{a^{2}+2ab+b}
Share
Copied to clipboard
\frac{\frac{\left(3a+b\right)^{2}}{\left(3a+b\right)\left(3a-b\right)}-\frac{2a^{2}}{3a^{2}-ab}}{\frac{a^{2}+2ab+b}{b-3a}}
Factor the expressions that are not already factored in \frac{9a^{2}+6ab+b^{2}}{9a^{2}-b^{2}}.
\frac{\frac{3a+b}{3a-b}-\frac{2a^{2}}{3a^{2}-ab}}{\frac{a^{2}+2ab+b}{b-3a}}
Cancel out 3a+b in both numerator and denominator.
\frac{\frac{3a+b}{3a-b}-\frac{2a^{2}}{a\left(3a-b\right)}}{\frac{a^{2}+2ab+b}{b-3a}}
Factor the expressions that are not already factored in \frac{2a^{2}}{3a^{2}-ab}.
\frac{\frac{3a+b}{3a-b}-\frac{2a}{3a-b}}{\frac{a^{2}+2ab+b}{b-3a}}
Cancel out a in both numerator and denominator.
\frac{\frac{3a+b-2a}{3a-b}}{\frac{a^{2}+2ab+b}{b-3a}}
Since \frac{3a+b}{3a-b} and \frac{2a}{3a-b} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a+b}{3a-b}}{\frac{a^{2}+2ab+b}{b-3a}}
Combine like terms in 3a+b-2a.
\frac{\left(a+b\right)\left(b-3a\right)}{\left(3a-b\right)\left(a^{2}+2ab+b\right)}
Divide \frac{a+b}{3a-b} by \frac{a^{2}+2ab+b}{b-3a} by multiplying \frac{a+b}{3a-b} by the reciprocal of \frac{a^{2}+2ab+b}{b-3a}.
\frac{-\left(a+b\right)\left(3a-b\right)}{\left(3a-b\right)\left(a^{2}+2ab+b\right)}
Extract the negative sign in b-3a.
\frac{-\left(a+b\right)}{a^{2}+2ab+b}
Cancel out 3a-b in both numerator and denominator.
\frac{-a-b}{a^{2}+2ab+b}
To find the opposite of a+b, find the opposite of each term.
\frac{\frac{\left(3a+b\right)^{2}}{\left(3a+b\right)\left(3a-b\right)}-\frac{2a^{2}}{3a^{2}-ab}}{\frac{a^{2}+2ab+b}{b-3a}}
Factor the expressions that are not already factored in \frac{9a^{2}+6ab+b^{2}}{9a^{2}-b^{2}}.
\frac{\frac{3a+b}{3a-b}-\frac{2a^{2}}{3a^{2}-ab}}{\frac{a^{2}+2ab+b}{b-3a}}
Cancel out 3a+b in both numerator and denominator.
\frac{\frac{3a+b}{3a-b}-\frac{2a^{2}}{a\left(3a-b\right)}}{\frac{a^{2}+2ab+b}{b-3a}}
Factor the expressions that are not already factored in \frac{2a^{2}}{3a^{2}-ab}.
\frac{\frac{3a+b}{3a-b}-\frac{2a}{3a-b}}{\frac{a^{2}+2ab+b}{b-3a}}
Cancel out a in both numerator and denominator.
\frac{\frac{3a+b-2a}{3a-b}}{\frac{a^{2}+2ab+b}{b-3a}}
Since \frac{3a+b}{3a-b} and \frac{2a}{3a-b} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a+b}{3a-b}}{\frac{a^{2}+2ab+b}{b-3a}}
Combine like terms in 3a+b-2a.
\frac{\left(a+b\right)\left(b-3a\right)}{\left(3a-b\right)\left(a^{2}+2ab+b\right)}
Divide \frac{a+b}{3a-b} by \frac{a^{2}+2ab+b}{b-3a} by multiplying \frac{a+b}{3a-b} by the reciprocal of \frac{a^{2}+2ab+b}{b-3a}.
\frac{-\left(a+b\right)\left(3a-b\right)}{\left(3a-b\right)\left(a^{2}+2ab+b\right)}
Extract the negative sign in b-3a.
\frac{-\left(a+b\right)}{a^{2}+2ab+b}
Cancel out 3a-b in both numerator and denominator.
\frac{-a-b}{a^{2}+2ab+b}
To find the opposite of a+b, find the opposite of each term.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}