Evaluate
\frac{270461}{148500}\approx 1.821286195
Factor
\frac{270461}{2 ^ {2} \cdot 3 ^ {3} \cdot 5 ^ {3} \cdot 11} = 1\frac{121961}{148500} = 1.8212861952861952
Share
Copied to clipboard
\frac{9-1}{3}\times \frac{4}{3^{2}}+\frac{4-1}{3}\times \frac{1}{4}+\frac{5-1}{3}\times \frac{4}{5^{3}}+\frac{6\times 1}{3}\times \frac{4}{6^{2}}+\frac{2\times 1}{3}\times \frac{4}{22}
Rewrite 4^{2} as 4\times 4. Cancel out 4 in both numerator and denominator.
\frac{8}{3}\times \frac{4}{3^{2}}+\frac{4-1}{3}\times \frac{1}{4}+\frac{5-1}{3}\times \frac{4}{5^{3}}+\frac{6\times 1}{3}\times \frac{4}{6^{2}}+\frac{2\times 1}{3}\times \frac{4}{22}
Subtract 1 from 9 to get 8.
\frac{8}{3}\times \frac{4}{9}+\frac{4-1}{3}\times \frac{1}{4}+\frac{5-1}{3}\times \frac{4}{5^{3}}+\frac{6\times 1}{3}\times \frac{4}{6^{2}}+\frac{2\times 1}{3}\times \frac{4}{22}
Calculate 3 to the power of 2 and get 9.
\frac{8\times 4}{3\times 9}+\frac{4-1}{3}\times \frac{1}{4}+\frac{5-1}{3}\times \frac{4}{5^{3}}+\frac{6\times 1}{3}\times \frac{4}{6^{2}}+\frac{2\times 1}{3}\times \frac{4}{22}
Multiply \frac{8}{3} times \frac{4}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{32}{27}+\frac{4-1}{3}\times \frac{1}{4}+\frac{5-1}{3}\times \frac{4}{5^{3}}+\frac{6\times 1}{3}\times \frac{4}{6^{2}}+\frac{2\times 1}{3}\times \frac{4}{22}
Do the multiplications in the fraction \frac{8\times 4}{3\times 9}.
\frac{32}{27}+\frac{3}{3}\times \frac{1}{4}+\frac{5-1}{3}\times \frac{4}{5^{3}}+\frac{6\times 1}{3}\times \frac{4}{6^{2}}+\frac{2\times 1}{3}\times \frac{4}{22}
Subtract 1 from 4 to get 3.
\frac{32}{27}+1\times \frac{1}{4}+\frac{5-1}{3}\times \frac{4}{5^{3}}+\frac{6\times 1}{3}\times \frac{4}{6^{2}}+\frac{2\times 1}{3}\times \frac{4}{22}
Divide 3 by 3 to get 1.
\frac{32}{27}+\frac{1}{4}+\frac{5-1}{3}\times \frac{4}{5^{3}}+\frac{6\times 1}{3}\times \frac{4}{6^{2}}+\frac{2\times 1}{3}\times \frac{4}{22}
Multiply 1 and \frac{1}{4} to get \frac{1}{4}.
\frac{128}{108}+\frac{27}{108}+\frac{5-1}{3}\times \frac{4}{5^{3}}+\frac{6\times 1}{3}\times \frac{4}{6^{2}}+\frac{2\times 1}{3}\times \frac{4}{22}
Least common multiple of 27 and 4 is 108. Convert \frac{32}{27} and \frac{1}{4} to fractions with denominator 108.
\frac{128+27}{108}+\frac{5-1}{3}\times \frac{4}{5^{3}}+\frac{6\times 1}{3}\times \frac{4}{6^{2}}+\frac{2\times 1}{3}\times \frac{4}{22}
Since \frac{128}{108} and \frac{27}{108} have the same denominator, add them by adding their numerators.
\frac{155}{108}+\frac{5-1}{3}\times \frac{4}{5^{3}}+\frac{6\times 1}{3}\times \frac{4}{6^{2}}+\frac{2\times 1}{3}\times \frac{4}{22}
Add 128 and 27 to get 155.
\frac{155}{108}+\frac{4}{3}\times \frac{4}{5^{3}}+\frac{6\times 1}{3}\times \frac{4}{6^{2}}+\frac{2\times 1}{3}\times \frac{4}{22}
Subtract 1 from 5 to get 4.
\frac{155}{108}+\frac{4}{3}\times \frac{4}{125}+\frac{6\times 1}{3}\times \frac{4}{6^{2}}+\frac{2\times 1}{3}\times \frac{4}{22}
Calculate 5 to the power of 3 and get 125.
\frac{155}{108}+\frac{4\times 4}{3\times 125}+\frac{6\times 1}{3}\times \frac{4}{6^{2}}+\frac{2\times 1}{3}\times \frac{4}{22}
Multiply \frac{4}{3} times \frac{4}{125} by multiplying numerator times numerator and denominator times denominator.
\frac{155}{108}+\frac{16}{375}+\frac{6\times 1}{3}\times \frac{4}{6^{2}}+\frac{2\times 1}{3}\times \frac{4}{22}
Do the multiplications in the fraction \frac{4\times 4}{3\times 125}.
\frac{19375}{13500}+\frac{576}{13500}+\frac{6\times 1}{3}\times \frac{4}{6^{2}}+\frac{2\times 1}{3}\times \frac{4}{22}
Least common multiple of 108 and 375 is 13500. Convert \frac{155}{108} and \frac{16}{375} to fractions with denominator 13500.
\frac{19375+576}{13500}+\frac{6\times 1}{3}\times \frac{4}{6^{2}}+\frac{2\times 1}{3}\times \frac{4}{22}
Since \frac{19375}{13500} and \frac{576}{13500} have the same denominator, add them by adding their numerators.
\frac{19951}{13500}+\frac{6\times 1}{3}\times \frac{4}{6^{2}}+\frac{2\times 1}{3}\times \frac{4}{22}
Add 19375 and 576 to get 19951.
\frac{19951}{13500}+\frac{6}{3}\times \frac{4}{6^{2}}+\frac{2\times 1}{3}\times \frac{4}{22}
Multiply 6 and 1 to get 6.
\frac{19951}{13500}+2\times \frac{4}{6^{2}}+\frac{2\times 1}{3}\times \frac{4}{22}
Divide 6 by 3 to get 2.
\frac{19951}{13500}+2\times \frac{4}{36}+\frac{2\times 1}{3}\times \frac{4}{22}
Calculate 6 to the power of 2 and get 36.
\frac{19951}{13500}+2\times \frac{1}{9}+\frac{2\times 1}{3}\times \frac{4}{22}
Reduce the fraction \frac{4}{36} to lowest terms by extracting and canceling out 4.
\frac{19951}{13500}+\frac{2}{9}+\frac{2\times 1}{3}\times \frac{4}{22}
Multiply 2 and \frac{1}{9} to get \frac{2}{9}.
\frac{19951}{13500}+\frac{3000}{13500}+\frac{2\times 1}{3}\times \frac{4}{22}
Least common multiple of 13500 and 9 is 13500. Convert \frac{19951}{13500} and \frac{2}{9} to fractions with denominator 13500.
\frac{19951+3000}{13500}+\frac{2\times 1}{3}\times \frac{4}{22}
Since \frac{19951}{13500} and \frac{3000}{13500} have the same denominator, add them by adding their numerators.
\frac{22951}{13500}+\frac{2\times 1}{3}\times \frac{4}{22}
Add 19951 and 3000 to get 22951.
\frac{22951}{13500}+\frac{2}{3}\times \frac{4}{22}
Multiply 2 and 1 to get 2.
\frac{22951}{13500}+\frac{2}{3}\times \frac{2}{11}
Reduce the fraction \frac{4}{22} to lowest terms by extracting and canceling out 2.
\frac{22951}{13500}+\frac{2\times 2}{3\times 11}
Multiply \frac{2}{3} times \frac{2}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{22951}{13500}+\frac{4}{33}
Do the multiplications in the fraction \frac{2\times 2}{3\times 11}.
\frac{252461}{148500}+\frac{18000}{148500}
Least common multiple of 13500 and 33 is 148500. Convert \frac{22951}{13500} and \frac{4}{33} to fractions with denominator 148500.
\frac{252461+18000}{148500}
Since \frac{252461}{148500} and \frac{18000}{148500} have the same denominator, add them by adding their numerators.
\frac{270461}{148500}
Add 252461 and 18000 to get 270461.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}