Verify
true
Share
Copied to clipboard
\frac{9}{8}\times 10-\frac{8}{10}+\frac{3}{12}=\frac{107}{10}
Divide 20 by 2 to get 10.
\frac{9\times 10}{8}-\frac{8}{10}+\frac{3}{12}=\frac{107}{10}
Express \frac{9}{8}\times 10 as a single fraction.
\frac{90}{8}-\frac{8}{10}+\frac{3}{12}=\frac{107}{10}
Multiply 9 and 10 to get 90.
\frac{45}{4}-\frac{8}{10}+\frac{3}{12}=\frac{107}{10}
Reduce the fraction \frac{90}{8} to lowest terms by extracting and canceling out 2.
\frac{45}{4}-\frac{4}{5}+\frac{3}{12}=\frac{107}{10}
Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
\frac{225}{20}-\frac{16}{20}+\frac{3}{12}=\frac{107}{10}
Least common multiple of 4 and 5 is 20. Convert \frac{45}{4} and \frac{4}{5} to fractions with denominator 20.
\frac{225-16}{20}+\frac{3}{12}=\frac{107}{10}
Since \frac{225}{20} and \frac{16}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{209}{20}+\frac{3}{12}=\frac{107}{10}
Subtract 16 from 225 to get 209.
\frac{209}{20}+\frac{1}{4}=\frac{107}{10}
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
\frac{209}{20}+\frac{5}{20}=\frac{107}{10}
Least common multiple of 20 and 4 is 20. Convert \frac{209}{20} and \frac{1}{4} to fractions with denominator 20.
\frac{209+5}{20}=\frac{107}{10}
Since \frac{209}{20} and \frac{5}{20} have the same denominator, add them by adding their numerators.
\frac{214}{20}=\frac{107}{10}
Add 209 and 5 to get 214.
\frac{107}{10}=\frac{107}{10}
Reduce the fraction \frac{214}{20} to lowest terms by extracting and canceling out 2.
\text{true}
Compare \frac{107}{10} and \frac{107}{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}