( \frac { 9 } { 2 } x - \frac { 3 } { 4 } y + 1 = 0 )
Solve for x
x=\frac{y}{6}-\frac{2}{9}
Solve for y
y=6x+\frac{4}{3}
Graph
Share
Copied to clipboard
\frac{9}{2}x+1=\frac{3}{4}y
Add \frac{3}{4}y to both sides. Anything plus zero gives itself.
\frac{9}{2}x=\frac{3}{4}y-1
Subtract 1 from both sides.
\frac{9}{2}x=\frac{3y}{4}-1
The equation is in standard form.
\frac{\frac{9}{2}x}{\frac{9}{2}}=\frac{\frac{3y}{4}-1}{\frac{9}{2}}
Divide both sides of the equation by \frac{9}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{\frac{3y}{4}-1}{\frac{9}{2}}
Dividing by \frac{9}{2} undoes the multiplication by \frac{9}{2}.
x=\frac{y}{6}-\frac{2}{9}
Divide \frac{3y}{4}-1 by \frac{9}{2} by multiplying \frac{3y}{4}-1 by the reciprocal of \frac{9}{2}.
-\frac{3}{4}y+1=-\frac{9}{2}x
Subtract \frac{9}{2}x from both sides. Anything subtracted from zero gives its negation.
-\frac{3}{4}y=-\frac{9}{2}x-1
Subtract 1 from both sides.
-\frac{3}{4}y=-\frac{9x}{2}-1
The equation is in standard form.
\frac{-\frac{3}{4}y}{-\frac{3}{4}}=\frac{-\frac{9x}{2}-1}{-\frac{3}{4}}
Divide both sides of the equation by -\frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{-\frac{9x}{2}-1}{-\frac{3}{4}}
Dividing by -\frac{3}{4} undoes the multiplication by -\frac{3}{4}.
y=6x+\frac{4}{3}
Divide -\frac{9x}{2}-1 by -\frac{3}{4} by multiplying -\frac{9x}{2}-1 by the reciprocal of -\frac{3}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}