Solve for x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
\frac{9}{2}+x=\frac{63}{16}x\left(\frac{7}{12}+\frac{5}{4}-\frac{3}{2}\right)\times \frac{10}{3}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{9}{2}+x=\frac{63}{16}x\left(\frac{7}{12}+\frac{15}{12}-\frac{3}{2}\right)\times \frac{10}{3}
Least common multiple of 12 and 4 is 12. Convert \frac{7}{12} and \frac{5}{4} to fractions with denominator 12.
\frac{9}{2}+x=\frac{63}{16}x\left(\frac{7+15}{12}-\frac{3}{2}\right)\times \frac{10}{3}
Since \frac{7}{12} and \frac{15}{12} have the same denominator, add them by adding their numerators.
\frac{9}{2}+x=\frac{63}{16}x\left(\frac{22}{12}-\frac{3}{2}\right)\times \frac{10}{3}
Add 7 and 15 to get 22.
\frac{9}{2}+x=\frac{63}{16}x\left(\frac{11}{6}-\frac{3}{2}\right)\times \frac{10}{3}
Reduce the fraction \frac{22}{12} to lowest terms by extracting and canceling out 2.
\frac{9}{2}+x=\frac{63}{16}x\left(\frac{11}{6}-\frac{9}{6}\right)\times \frac{10}{3}
Least common multiple of 6 and 2 is 6. Convert \frac{11}{6} and \frac{3}{2} to fractions with denominator 6.
\frac{9}{2}+x=\frac{63}{16}x\times \frac{11-9}{6}\times \frac{10}{3}
Since \frac{11}{6} and \frac{9}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{2}+x=\frac{63}{16}x\times \frac{2}{6}\times \frac{10}{3}
Subtract 9 from 11 to get 2.
\frac{9}{2}+x=\frac{63}{16}x\times \frac{1}{3}\times \frac{10}{3}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{9}{2}+x=\frac{63\times 1}{16\times 3}x\times \frac{10}{3}
Multiply \frac{63}{16} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{2}+x=\frac{63}{48}x\times \frac{10}{3}
Do the multiplications in the fraction \frac{63\times 1}{16\times 3}.
\frac{9}{2}+x=\frac{21}{16}x\times \frac{10}{3}
Reduce the fraction \frac{63}{48} to lowest terms by extracting and canceling out 3.
\frac{9}{2}+x=\frac{21\times 10}{16\times 3}x
Multiply \frac{21}{16} times \frac{10}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{2}+x=\frac{210}{48}x
Do the multiplications in the fraction \frac{21\times 10}{16\times 3}.
\frac{9}{2}+x=\frac{35}{8}x
Reduce the fraction \frac{210}{48} to lowest terms by extracting and canceling out 6.
\frac{9}{2}+x-\frac{35}{8}x=0
Subtract \frac{35}{8}x from both sides.
\frac{9}{2}-\frac{27}{8}x=0
Combine x and -\frac{35}{8}x to get -\frac{27}{8}x.
-\frac{27}{8}x=-\frac{9}{2}
Subtract \frac{9}{2} from both sides. Anything subtracted from zero gives its negation.
x=-\frac{9}{2}\left(-\frac{8}{27}\right)
Multiply both sides by -\frac{8}{27}, the reciprocal of -\frac{27}{8}.
x=\frac{-9\left(-8\right)}{2\times 27}
Multiply -\frac{9}{2} times -\frac{8}{27} by multiplying numerator times numerator and denominator times denominator.
x=\frac{72}{54}
Do the multiplications in the fraction \frac{-9\left(-8\right)}{2\times 27}.
x=\frac{4}{3}
Reduce the fraction \frac{72}{54} to lowest terms by extracting and canceling out 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}