Evaluate
3^{\frac{n}{2}}
Differentiate w.r.t. n
\frac{\ln(3)\times 3^{\frac{n}{2}}}{2}
Share
Copied to clipboard
\left(\frac{\left(3^{n}+1\right)\times \left(3^{n}\right)^{2}}{3^{n}\left(3^{n}+1\right)}\right)^{\frac{1}{2}}
Factor the expressions that are not already factored in \frac{9^{n}+27^{n}}{3^{n}+9^{n}}.
\left(\frac{\left(3^{n}\right)^{2}}{3^{n}}\right)^{\frac{1}{2}}
Cancel out 3^{n}+1 in both numerator and denominator.
\frac{\left(\left(3^{n}\right)^{2}\right)^{\frac{1}{2}}}{\left(3^{n}\right)^{\frac{1}{2}}}
To raise \frac{\left(3^{n}\right)^{2}}{3^{n}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3^{n}\right)^{1}}{\left(3^{n}\right)^{\frac{1}{2}}}
To raise a power to another power, multiply the exponents. Multiply 2 and \frac{1}{2} to get 1.
\left(3^{n}\right)^{\frac{1}{2}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract \frac{1}{2} from 1 to get \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}