Evaluate
\frac{1523431}{900000}\approx 1.692701111
Factor
\frac{7 \cdot 13 \cdot 16741}{2 ^ {5} \cdot 3 ^ {2} \cdot 5 ^ {5}} = 1\frac{623431}{900000} = 1.6927011111111112
Share
Copied to clipboard
\left(\frac{8321}{1200}+\frac{5.87}{9}+\frac{4.27}{32}-\frac{5.22}{32}\right)\times \frac{22.4}{100}
Expand \frac{83.21}{12} by multiplying both numerator and the denominator by 100.
\left(\frac{8321}{1200}+\frac{587}{900}+\frac{4.27}{32}-\frac{5.22}{32}\right)\times \frac{22.4}{100}
Expand \frac{5.87}{9} by multiplying both numerator and the denominator by 100.
\left(\frac{24963}{3600}+\frac{2348}{3600}+\frac{4.27}{32}-\frac{5.22}{32}\right)\times \frac{22.4}{100}
Least common multiple of 1200 and 900 is 3600. Convert \frac{8321}{1200} and \frac{587}{900} to fractions with denominator 3600.
\left(\frac{24963+2348}{3600}+\frac{4.27}{32}-\frac{5.22}{32}\right)\times \frac{22.4}{100}
Since \frac{24963}{3600} and \frac{2348}{3600} have the same denominator, add them by adding their numerators.
\left(\frac{27311}{3600}+\frac{4.27}{32}-\frac{5.22}{32}\right)\times \frac{22.4}{100}
Add 24963 and 2348 to get 27311.
\left(\frac{27311}{3600}+\frac{427}{3200}-\frac{5.22}{32}\right)\times \frac{22.4}{100}
Expand \frac{4.27}{32} by multiplying both numerator and the denominator by 100.
\left(\frac{218488}{28800}+\frac{3843}{28800}-\frac{5.22}{32}\right)\times \frac{22.4}{100}
Least common multiple of 3600 and 3200 is 28800. Convert \frac{27311}{3600} and \frac{427}{3200} to fractions with denominator 28800.
\left(\frac{218488+3843}{28800}-\frac{5.22}{32}\right)\times \frac{22.4}{100}
Since \frac{218488}{28800} and \frac{3843}{28800} have the same denominator, add them by adding their numerators.
\left(\frac{222331}{28800}-\frac{5.22}{32}\right)\times \frac{22.4}{100}
Add 218488 and 3843 to get 222331.
\left(\frac{222331}{28800}-\frac{522}{3200}\right)\times \frac{22.4}{100}
Expand \frac{5.22}{32} by multiplying both numerator and the denominator by 100.
\left(\frac{222331}{28800}-\frac{261}{1600}\right)\times \frac{22.4}{100}
Reduce the fraction \frac{522}{3200} to lowest terms by extracting and canceling out 2.
\left(\frac{222331}{28800}-\frac{4698}{28800}\right)\times \frac{22.4}{100}
Least common multiple of 28800 and 1600 is 28800. Convert \frac{222331}{28800} and \frac{261}{1600} to fractions with denominator 28800.
\frac{222331-4698}{28800}\times \frac{22.4}{100}
Since \frac{222331}{28800} and \frac{4698}{28800} have the same denominator, subtract them by subtracting their numerators.
\frac{217633}{28800}\times \frac{22.4}{100}
Subtract 4698 from 222331 to get 217633.
\frac{217633}{28800}\times \frac{224}{1000}
Expand \frac{22.4}{100} by multiplying both numerator and the denominator by 10.
\frac{217633}{28800}\times \frac{28}{125}
Reduce the fraction \frac{224}{1000} to lowest terms by extracting and canceling out 8.
\frac{217633\times 28}{28800\times 125}
Multiply \frac{217633}{28800} times \frac{28}{125} by multiplying numerator times numerator and denominator times denominator.
\frac{6093724}{3600000}
Do the multiplications in the fraction \frac{217633\times 28}{28800\times 125}.
\frac{1523431}{900000}
Reduce the fraction \frac{6093724}{3600000} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}