Evaluate
\frac{81}{8}=10.125
Factor
\frac{3 ^ {4}}{2 ^ {3}} = 10\frac{1}{8} = 10.125
Share
Copied to clipboard
\frac{83}{8}+\frac{12\times 10}{5\times 9}-\frac{35}{12}
Multiply \frac{12}{5} times \frac{10}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{83}{8}+\frac{120}{45}-\frac{35}{12}
Do the multiplications in the fraction \frac{12\times 10}{5\times 9}.
\frac{83}{8}+\frac{8}{3}-\frac{35}{12}
Reduce the fraction \frac{120}{45} to lowest terms by extracting and canceling out 15.
\frac{249}{24}+\frac{64}{24}-\frac{35}{12}
Least common multiple of 8 and 3 is 24. Convert \frac{83}{8} and \frac{8}{3} to fractions with denominator 24.
\frac{249+64}{24}-\frac{35}{12}
Since \frac{249}{24} and \frac{64}{24} have the same denominator, add them by adding their numerators.
\frac{313}{24}-\frac{35}{12}
Add 249 and 64 to get 313.
\frac{313}{24}-\frac{70}{24}
Least common multiple of 24 and 12 is 24. Convert \frac{313}{24} and \frac{35}{12} to fractions with denominator 24.
\frac{313-70}{24}
Since \frac{313}{24} and \frac{70}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{243}{24}
Subtract 70 from 313 to get 243.
\frac{81}{8}
Reduce the fraction \frac{243}{24} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}