( \frac { 81 } { 16 } ) ^ { 0,25 } \cdot ( ( - 8 ) ^ { - \frac { 4 } { 3 } } \cdot a ^ { - 8 } ) \cdot ( 2 ^ { - 2 } \cdot a ^ { 30 } ) =
Evaluate
\frac{3a^{22}}{128}
Differentiate w.r.t. a
\frac{33a^{21}}{64}
Share
Copied to clipboard
\left(\frac{81}{16}\right)^{0,25}\left(-8\right)^{-\frac{4}{3}}a^{22}\times 2^{-2}
To multiply powers of the same base, add their exponents. Add -8 and 30 to get 22.
\frac{3}{2}\left(-8\right)^{-\frac{4}{3}}a^{22}\times 2^{-2}
Calculate \frac{81}{16} to the power of 0,25 and get \frac{3}{2}.
\frac{3}{2}\times \frac{1}{16}a^{22}\times 2^{-2}
Calculate -8 to the power of -\frac{4}{3} and get \frac{1}{16}.
\frac{3}{32}a^{22}\times 2^{-2}
Multiply \frac{3}{2} and \frac{1}{16} to get \frac{3}{32}.
\frac{3}{32}a^{22}\times \frac{1}{4}
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{3}{128}a^{22}
Multiply \frac{3}{32} and \frac{1}{4} to get \frac{3}{128}.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(\frac{81}{16}\right)^{0,25}\left(-8\right)^{-\frac{4}{3}}a^{22}\times 2^{-2})
To multiply powers of the same base, add their exponents. Add -8 and 30 to get 22.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{3}{2}\left(-8\right)^{-\frac{4}{3}}a^{22}\times 2^{-2})
Calculate \frac{81}{16} to the power of 0,25 and get \frac{3}{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{3}{2}\times \frac{1}{16}a^{22}\times 2^{-2})
Calculate -8 to the power of -\frac{4}{3} and get \frac{1}{16}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{3}{32}a^{22}\times 2^{-2})
Multiply \frac{3}{2} and \frac{1}{16} to get \frac{3}{32}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{3}{32}a^{22}\times \frac{1}{4})
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{3}{128}a^{22})
Multiply \frac{3}{32} and \frac{1}{4} to get \frac{3}{128}.
22\times \frac{3}{128}a^{22-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{33}{64}a^{22-1}
Multiply 22 times \frac{3}{128}.
\frac{33}{64}a^{21}
Subtract 1 from 22.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}