Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{8b}{b+7}-\frac{15b}{\left(b+7\right)^{2}}}{\frac{8b+41}{b^{2}-49}}+\frac{7b-4}{6+7}
Factor b^{2}+14b+49.
\frac{\frac{8b\left(b+7\right)}{\left(b+7\right)^{2}}-\frac{15b}{\left(b+7\right)^{2}}}{\frac{8b+41}{b^{2}-49}}+\frac{7b-4}{6+7}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b+7 and \left(b+7\right)^{2} is \left(b+7\right)^{2}. Multiply \frac{8b}{b+7} times \frac{b+7}{b+7}.
\frac{\frac{8b\left(b+7\right)-15b}{\left(b+7\right)^{2}}}{\frac{8b+41}{b^{2}-49}}+\frac{7b-4}{6+7}
Since \frac{8b\left(b+7\right)}{\left(b+7\right)^{2}} and \frac{15b}{\left(b+7\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{8b^{2}+56b-15b}{\left(b+7\right)^{2}}}{\frac{8b+41}{b^{2}-49}}+\frac{7b-4}{6+7}
Do the multiplications in 8b\left(b+7\right)-15b.
\frac{\frac{8b^{2}+41b}{\left(b+7\right)^{2}}}{\frac{8b+41}{b^{2}-49}}+\frac{7b-4}{6+7}
Combine like terms in 8b^{2}+56b-15b.
\frac{\left(8b^{2}+41b\right)\left(b^{2}-49\right)}{\left(b+7\right)^{2}\left(8b+41\right)}+\frac{7b-4}{6+7}
Divide \frac{8b^{2}+41b}{\left(b+7\right)^{2}} by \frac{8b+41}{b^{2}-49} by multiplying \frac{8b^{2}+41b}{\left(b+7\right)^{2}} by the reciprocal of \frac{8b+41}{b^{2}-49}.
\frac{b\left(b-7\right)\left(b+7\right)\left(8b+41\right)}{\left(8b+41\right)\left(b+7\right)^{2}}+\frac{7b-4}{6+7}
Factor the expressions that are not already factored in \frac{\left(8b^{2}+41b\right)\left(b^{2}-49\right)}{\left(b+7\right)^{2}\left(8b+41\right)}.
\frac{b\left(b-7\right)}{b+7}+\frac{7b-4}{6+7}
Cancel out \left(b+7\right)\left(8b+41\right) in both numerator and denominator.
\frac{b\left(b-7\right)}{b+7}+\frac{7b-4}{13}
Add 6 and 7 to get 13.
\frac{13b\left(b-7\right)}{13\left(b+7\right)}+\frac{\left(7b-4\right)\left(b+7\right)}{13\left(b+7\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b+7 and 13 is 13\left(b+7\right). Multiply \frac{b\left(b-7\right)}{b+7} times \frac{13}{13}. Multiply \frac{7b-4}{13} times \frac{b+7}{b+7}.
\frac{13b\left(b-7\right)+\left(7b-4\right)\left(b+7\right)}{13\left(b+7\right)}
Since \frac{13b\left(b-7\right)}{13\left(b+7\right)} and \frac{\left(7b-4\right)\left(b+7\right)}{13\left(b+7\right)} have the same denominator, add them by adding their numerators.
\frac{13b^{2}-91b+7b^{2}+49b-4b-28}{13\left(b+7\right)}
Do the multiplications in 13b\left(b-7\right)+\left(7b-4\right)\left(b+7\right).
\frac{20b^{2}-46b-28}{13\left(b+7\right)}
Combine like terms in 13b^{2}-91b+7b^{2}+49b-4b-28.
\frac{20b^{2}-46b-28}{13b+91}
Expand 13\left(b+7\right).
\frac{\frac{8b}{b+7}-\frac{15b}{\left(b+7\right)^{2}}}{\frac{8b+41}{b^{2}-49}}+\frac{7b-4}{6+7}
Factor b^{2}+14b+49.
\frac{\frac{8b\left(b+7\right)}{\left(b+7\right)^{2}}-\frac{15b}{\left(b+7\right)^{2}}}{\frac{8b+41}{b^{2}-49}}+\frac{7b-4}{6+7}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b+7 and \left(b+7\right)^{2} is \left(b+7\right)^{2}. Multiply \frac{8b}{b+7} times \frac{b+7}{b+7}.
\frac{\frac{8b\left(b+7\right)-15b}{\left(b+7\right)^{2}}}{\frac{8b+41}{b^{2}-49}}+\frac{7b-4}{6+7}
Since \frac{8b\left(b+7\right)}{\left(b+7\right)^{2}} and \frac{15b}{\left(b+7\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{8b^{2}+56b-15b}{\left(b+7\right)^{2}}}{\frac{8b+41}{b^{2}-49}}+\frac{7b-4}{6+7}
Do the multiplications in 8b\left(b+7\right)-15b.
\frac{\frac{8b^{2}+41b}{\left(b+7\right)^{2}}}{\frac{8b+41}{b^{2}-49}}+\frac{7b-4}{6+7}
Combine like terms in 8b^{2}+56b-15b.
\frac{\left(8b^{2}+41b\right)\left(b^{2}-49\right)}{\left(b+7\right)^{2}\left(8b+41\right)}+\frac{7b-4}{6+7}
Divide \frac{8b^{2}+41b}{\left(b+7\right)^{2}} by \frac{8b+41}{b^{2}-49} by multiplying \frac{8b^{2}+41b}{\left(b+7\right)^{2}} by the reciprocal of \frac{8b+41}{b^{2}-49}.
\frac{b\left(b-7\right)\left(b+7\right)\left(8b+41\right)}{\left(8b+41\right)\left(b+7\right)^{2}}+\frac{7b-4}{6+7}
Factor the expressions that are not already factored in \frac{\left(8b^{2}+41b\right)\left(b^{2}-49\right)}{\left(b+7\right)^{2}\left(8b+41\right)}.
\frac{b\left(b-7\right)}{b+7}+\frac{7b-4}{6+7}
Cancel out \left(b+7\right)\left(8b+41\right) in both numerator and denominator.
\frac{b\left(b-7\right)}{b+7}+\frac{7b-4}{13}
Add 6 and 7 to get 13.
\frac{13b\left(b-7\right)}{13\left(b+7\right)}+\frac{\left(7b-4\right)\left(b+7\right)}{13\left(b+7\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b+7 and 13 is 13\left(b+7\right). Multiply \frac{b\left(b-7\right)}{b+7} times \frac{13}{13}. Multiply \frac{7b-4}{13} times \frac{b+7}{b+7}.
\frac{13b\left(b-7\right)+\left(7b-4\right)\left(b+7\right)}{13\left(b+7\right)}
Since \frac{13b\left(b-7\right)}{13\left(b+7\right)} and \frac{\left(7b-4\right)\left(b+7\right)}{13\left(b+7\right)} have the same denominator, add them by adding their numerators.
\frac{13b^{2}-91b+7b^{2}+49b-4b-28}{13\left(b+7\right)}
Do the multiplications in 13b\left(b-7\right)+\left(7b-4\right)\left(b+7\right).
\frac{20b^{2}-46b-28}{13\left(b+7\right)}
Combine like terms in 13b^{2}-91b+7b^{2}+49b-4b-28.
\frac{20b^{2}-46b-28}{13b+91}
Expand 13\left(b+7\right).