Evaluate
\frac{2\left(5b-14\right)\left(2b+1\right)}{13\left(b+7\right)}
Expand
\frac{2\left(10b^{2}-23b-14\right)}{13\left(b+7\right)}
Share
Copied to clipboard
\frac{\frac{8b}{b+7}-\frac{15b}{\left(b+7\right)^{2}}}{\frac{8b+41}{b^{2}-49}}+\frac{7b-4}{6+7}
Factor b^{2}+14b+49.
\frac{\frac{8b\left(b+7\right)}{\left(b+7\right)^{2}}-\frac{15b}{\left(b+7\right)^{2}}}{\frac{8b+41}{b^{2}-49}}+\frac{7b-4}{6+7}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b+7 and \left(b+7\right)^{2} is \left(b+7\right)^{2}. Multiply \frac{8b}{b+7} times \frac{b+7}{b+7}.
\frac{\frac{8b\left(b+7\right)-15b}{\left(b+7\right)^{2}}}{\frac{8b+41}{b^{2}-49}}+\frac{7b-4}{6+7}
Since \frac{8b\left(b+7\right)}{\left(b+7\right)^{2}} and \frac{15b}{\left(b+7\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{8b^{2}+56b-15b}{\left(b+7\right)^{2}}}{\frac{8b+41}{b^{2}-49}}+\frac{7b-4}{6+7}
Do the multiplications in 8b\left(b+7\right)-15b.
\frac{\frac{8b^{2}+41b}{\left(b+7\right)^{2}}}{\frac{8b+41}{b^{2}-49}}+\frac{7b-4}{6+7}
Combine like terms in 8b^{2}+56b-15b.
\frac{\left(8b^{2}+41b\right)\left(b^{2}-49\right)}{\left(b+7\right)^{2}\left(8b+41\right)}+\frac{7b-4}{6+7}
Divide \frac{8b^{2}+41b}{\left(b+7\right)^{2}} by \frac{8b+41}{b^{2}-49} by multiplying \frac{8b^{2}+41b}{\left(b+7\right)^{2}} by the reciprocal of \frac{8b+41}{b^{2}-49}.
\frac{b\left(b-7\right)\left(b+7\right)\left(8b+41\right)}{\left(8b+41\right)\left(b+7\right)^{2}}+\frac{7b-4}{6+7}
Factor the expressions that are not already factored in \frac{\left(8b^{2}+41b\right)\left(b^{2}-49\right)}{\left(b+7\right)^{2}\left(8b+41\right)}.
\frac{b\left(b-7\right)}{b+7}+\frac{7b-4}{6+7}
Cancel out \left(b+7\right)\left(8b+41\right) in both numerator and denominator.
\frac{b\left(b-7\right)}{b+7}+\frac{7b-4}{13}
Add 6 and 7 to get 13.
\frac{13b\left(b-7\right)}{13\left(b+7\right)}+\frac{\left(7b-4\right)\left(b+7\right)}{13\left(b+7\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b+7 and 13 is 13\left(b+7\right). Multiply \frac{b\left(b-7\right)}{b+7} times \frac{13}{13}. Multiply \frac{7b-4}{13} times \frac{b+7}{b+7}.
\frac{13b\left(b-7\right)+\left(7b-4\right)\left(b+7\right)}{13\left(b+7\right)}
Since \frac{13b\left(b-7\right)}{13\left(b+7\right)} and \frac{\left(7b-4\right)\left(b+7\right)}{13\left(b+7\right)} have the same denominator, add them by adding their numerators.
\frac{13b^{2}-91b+7b^{2}+49b-4b-28}{13\left(b+7\right)}
Do the multiplications in 13b\left(b-7\right)+\left(7b-4\right)\left(b+7\right).
\frac{20b^{2}-46b-28}{13\left(b+7\right)}
Combine like terms in 13b^{2}-91b+7b^{2}+49b-4b-28.
\frac{20b^{2}-46b-28}{13b+91}
Expand 13\left(b+7\right).
\frac{\frac{8b}{b+7}-\frac{15b}{\left(b+7\right)^{2}}}{\frac{8b+41}{b^{2}-49}}+\frac{7b-4}{6+7}
Factor b^{2}+14b+49.
\frac{\frac{8b\left(b+7\right)}{\left(b+7\right)^{2}}-\frac{15b}{\left(b+7\right)^{2}}}{\frac{8b+41}{b^{2}-49}}+\frac{7b-4}{6+7}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b+7 and \left(b+7\right)^{2} is \left(b+7\right)^{2}. Multiply \frac{8b}{b+7} times \frac{b+7}{b+7}.
\frac{\frac{8b\left(b+7\right)-15b}{\left(b+7\right)^{2}}}{\frac{8b+41}{b^{2}-49}}+\frac{7b-4}{6+7}
Since \frac{8b\left(b+7\right)}{\left(b+7\right)^{2}} and \frac{15b}{\left(b+7\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{8b^{2}+56b-15b}{\left(b+7\right)^{2}}}{\frac{8b+41}{b^{2}-49}}+\frac{7b-4}{6+7}
Do the multiplications in 8b\left(b+7\right)-15b.
\frac{\frac{8b^{2}+41b}{\left(b+7\right)^{2}}}{\frac{8b+41}{b^{2}-49}}+\frac{7b-4}{6+7}
Combine like terms in 8b^{2}+56b-15b.
\frac{\left(8b^{2}+41b\right)\left(b^{2}-49\right)}{\left(b+7\right)^{2}\left(8b+41\right)}+\frac{7b-4}{6+7}
Divide \frac{8b^{2}+41b}{\left(b+7\right)^{2}} by \frac{8b+41}{b^{2}-49} by multiplying \frac{8b^{2}+41b}{\left(b+7\right)^{2}} by the reciprocal of \frac{8b+41}{b^{2}-49}.
\frac{b\left(b-7\right)\left(b+7\right)\left(8b+41\right)}{\left(8b+41\right)\left(b+7\right)^{2}}+\frac{7b-4}{6+7}
Factor the expressions that are not already factored in \frac{\left(8b^{2}+41b\right)\left(b^{2}-49\right)}{\left(b+7\right)^{2}\left(8b+41\right)}.
\frac{b\left(b-7\right)}{b+7}+\frac{7b-4}{6+7}
Cancel out \left(b+7\right)\left(8b+41\right) in both numerator and denominator.
\frac{b\left(b-7\right)}{b+7}+\frac{7b-4}{13}
Add 6 and 7 to get 13.
\frac{13b\left(b-7\right)}{13\left(b+7\right)}+\frac{\left(7b-4\right)\left(b+7\right)}{13\left(b+7\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b+7 and 13 is 13\left(b+7\right). Multiply \frac{b\left(b-7\right)}{b+7} times \frac{13}{13}. Multiply \frac{7b-4}{13} times \frac{b+7}{b+7}.
\frac{13b\left(b-7\right)+\left(7b-4\right)\left(b+7\right)}{13\left(b+7\right)}
Since \frac{13b\left(b-7\right)}{13\left(b+7\right)} and \frac{\left(7b-4\right)\left(b+7\right)}{13\left(b+7\right)} have the same denominator, add them by adding their numerators.
\frac{13b^{2}-91b+7b^{2}+49b-4b-28}{13\left(b+7\right)}
Do the multiplications in 13b\left(b-7\right)+\left(7b-4\right)\left(b+7\right).
\frac{20b^{2}-46b-28}{13\left(b+7\right)}
Combine like terms in 13b^{2}-91b+7b^{2}+49b-4b-28.
\frac{20b^{2}-46b-28}{13b+91}
Expand 13\left(b+7\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}