Evaluate
\frac{10}{9}\approx 1.111111111
Factor
\frac{2 \cdot 5}{3 ^ {2}} = 1\frac{1}{9} = 1.1111111111111112
Graph
Share
Copied to clipboard
\frac{8}{x}+\frac{5}{9}-\left(\frac{8\times 9}{9x}-\frac{5x}{9x}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 9 is 9x. Multiply \frac{8}{x} times \frac{9}{9}. Multiply \frac{5}{9} times \frac{x}{x}.
\frac{8}{x}+\frac{5}{9}-\frac{8\times 9-5x}{9x}
Since \frac{8\times 9}{9x} and \frac{5x}{9x} have the same denominator, subtract them by subtracting their numerators.
\frac{8}{x}+\frac{5}{9}-\frac{72-5x}{9x}
Do the multiplications in 8\times 9-5x.
\frac{8\times 9}{9x}+\frac{5x}{9x}-\frac{72-5x}{9x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 9 is 9x. Multiply \frac{8}{x} times \frac{9}{9}. Multiply \frac{5}{9} times \frac{x}{x}.
\frac{8\times 9+5x}{9x}-\frac{72-5x}{9x}
Since \frac{8\times 9}{9x} and \frac{5x}{9x} have the same denominator, add them by adding their numerators.
\frac{72+5x}{9x}-\frac{72-5x}{9x}
Do the multiplications in 8\times 9+5x.
\frac{72+5x-\left(72-5x\right)}{9x}
Since \frac{72+5x}{9x} and \frac{72-5x}{9x} have the same denominator, subtract them by subtracting their numerators.
\frac{72+5x-72+5x}{9x}
Do the multiplications in 72+5x-\left(72-5x\right).
\frac{10x}{9x}
Combine like terms in 72+5x-72+5x.
\frac{10}{9}
Cancel out x in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}