( \frac { 8 } { 5 } \times 3 \frac { 1 } { 3 } ) + ( 6 \frac { 3 } { 7 } : 4,5 )
Evaluate
\frac{142}{21}\approx 6,761904762
Factor
\frac{2 \cdot 71}{3 \cdot 7} = 6\frac{16}{21} = 6.761904761904762
Share
Copied to clipboard
\frac{8}{5}\times \frac{9+1}{3}+\frac{\frac{6\times 7+3}{7}}{4,5}
Multiply 3 and 3 to get 9.
\frac{8}{5}\times \frac{10}{3}+\frac{\frac{6\times 7+3}{7}}{4,5}
Add 9 and 1 to get 10.
\frac{8\times 10}{5\times 3}+\frac{\frac{6\times 7+3}{7}}{4,5}
Multiply \frac{8}{5} times \frac{10}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{80}{15}+\frac{\frac{6\times 7+3}{7}}{4,5}
Do the multiplications in the fraction \frac{8\times 10}{5\times 3}.
\frac{16}{3}+\frac{\frac{6\times 7+3}{7}}{4,5}
Reduce the fraction \frac{80}{15} to lowest terms by extracting and canceling out 5.
\frac{16}{3}+\frac{6\times 7+3}{7\times 4,5}
Express \frac{\frac{6\times 7+3}{7}}{4,5} as a single fraction.
\frac{16}{3}+\frac{42+3}{7\times 4,5}
Multiply 6 and 7 to get 42.
\frac{16}{3}+\frac{45}{7\times 4,5}
Add 42 and 3 to get 45.
\frac{16}{3}+\frac{45}{31,5}
Multiply 7 and 4,5 to get 31,5.
\frac{16}{3}+\frac{450}{315}
Expand \frac{45}{31,5} by multiplying both numerator and the denominator by 10.
\frac{16}{3}+\frac{10}{7}
Reduce the fraction \frac{450}{315} to lowest terms by extracting and canceling out 45.
\frac{112}{21}+\frac{30}{21}
Least common multiple of 3 and 7 is 21. Convert \frac{16}{3} and \frac{10}{7} to fractions with denominator 21.
\frac{112+30}{21}
Since \frac{112}{21} and \frac{30}{21} have the same denominator, add them by adding their numerators.
\frac{142}{21}
Add 112 and 30 to get 142.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}