( \frac { 8 } { 3 } x ^ { 3 } - \frac { 5 } { 17 } x ^ { 2 } - 9 x - \frac { 2 } { 34 } ) + ( \frac { 7 } { 6 } x ^ { 3 } + \frac { 3 } { 34 } x ^ { 2 } + \frac { 5 } { 17 }
Evaluate
\frac{23x^{3}}{6}-\frac{7x^{2}}{34}-9x+\frac{4}{17}
Factor
\frac{391x^{3}-21x^{2}-918x+24}{102}
Graph
Share
Copied to clipboard
\frac{8}{3}x^{3}-\frac{5}{17}x^{2}-9x-\frac{1}{17}+\frac{7}{6}x^{3}+\frac{3}{34}x^{2}+\frac{5}{17}
Reduce the fraction \frac{2}{34} to lowest terms by extracting and canceling out 2.
\frac{23}{6}x^{3}-\frac{5}{17}x^{2}-9x-\frac{1}{17}+\frac{3}{34}x^{2}+\frac{5}{17}
Combine \frac{8}{3}x^{3} and \frac{7}{6}x^{3} to get \frac{23}{6}x^{3}.
\frac{23}{6}x^{3}-\frac{7}{34}x^{2}-9x-\frac{1}{17}+\frac{5}{17}
Combine -\frac{5}{17}x^{2} and \frac{3}{34}x^{2} to get -\frac{7}{34}x^{2}.
\frac{23}{6}x^{3}-\frac{7}{34}x^{2}-9x+\frac{4}{17}
Add -\frac{1}{17} and \frac{5}{17} to get \frac{4}{17}.
\frac{391x^{3}-21x^{2}-918x+24}{102}
Factor out \frac{1}{102}. Polynomial 391x^{3}-21x^{2}-918x+24 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}