Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(8\sqrt{3}-\sqrt{2}\right)^{2}}{3^{2}}
To raise \frac{8\sqrt{3}-\sqrt{2}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{64\left(\sqrt{3}\right)^{2}-16\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{3^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8\sqrt{3}-\sqrt{2}\right)^{2}.
\frac{64\times 3-16\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{3^{2}}
The square of \sqrt{3} is 3.
\frac{192-16\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{3^{2}}
Multiply 64 and 3 to get 192.
\frac{192-16\sqrt{6}+\left(\sqrt{2}\right)^{2}}{3^{2}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{192-16\sqrt{6}+2}{3^{2}}
The square of \sqrt{2} is 2.
\frac{194-16\sqrt{6}}{3^{2}}
Add 192 and 2 to get 194.
\frac{194-16\sqrt{6}}{9}
Calculate 3 to the power of 2 and get 9.
\frac{\left(8\sqrt{3}-\sqrt{2}\right)^{2}}{3^{2}}
To raise \frac{8\sqrt{3}-\sqrt{2}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{64\left(\sqrt{3}\right)^{2}-16\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{3^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8\sqrt{3}-\sqrt{2}\right)^{2}.
\frac{64\times 3-16\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{3^{2}}
The square of \sqrt{3} is 3.
\frac{192-16\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{3^{2}}
Multiply 64 and 3 to get 192.
\frac{192-16\sqrt{6}+\left(\sqrt{2}\right)^{2}}{3^{2}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{192-16\sqrt{6}+2}{3^{2}}
The square of \sqrt{2} is 2.
\frac{194-16\sqrt{6}}{3^{2}}
Add 192 and 2 to get 194.
\frac{194-16\sqrt{6}}{9}
Calculate 3 to the power of 2 and get 9.