Evaluate
\frac{256}{75}\approx 3.413333333
Factor
\frac{2 ^ {8}}{3 \cdot 5 ^ {2}} = 3\frac{31}{75} = 3.4133333333333336
Share
Copied to clipboard
\frac{\left(8\sqrt{3}\right)^{2}}{15^{2}}+\left(\frac{8}{5}\right)^{2}
To raise \frac{8\sqrt{3}}{15} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(8\sqrt{3}\right)^{2}}{15^{2}}+\frac{64}{25}
Calculate \frac{8}{5} to the power of 2 and get \frac{64}{25}.
\frac{\left(8\sqrt{3}\right)^{2}}{225}+\frac{64\times 9}{225}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 15^{2} and 25 is 225. Multiply \frac{64}{25} times \frac{9}{9}.
\frac{\left(8\sqrt{3}\right)^{2}+64\times 9}{225}
Since \frac{\left(8\sqrt{3}\right)^{2}}{225} and \frac{64\times 9}{225} have the same denominator, add them by adding their numerators.
\frac{8^{2}\left(\sqrt{3}\right)^{2}}{15^{2}}+\frac{64}{25}
Expand \left(8\sqrt{3}\right)^{2}.
\frac{64\left(\sqrt{3}\right)^{2}}{15^{2}}+\frac{64}{25}
Calculate 8 to the power of 2 and get 64.
\frac{64\times 3}{15^{2}}+\frac{64}{25}
The square of \sqrt{3} is 3.
\frac{192}{15^{2}}+\frac{64}{25}
Multiply 64 and 3 to get 192.
\frac{192}{225}+\frac{64}{25}
Calculate 15 to the power of 2 and get 225.
\frac{64}{75}+\frac{64}{25}
Reduce the fraction \frac{192}{225} to lowest terms by extracting and canceling out 3.
\frac{256}{75}
Add \frac{64}{75} and \frac{64}{25} to get \frac{256}{75}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}