Evaluate
\frac{16}{15}\approx 1.066666667
Factor
\frac{2 ^ {4}}{3 \cdot 5} = 1\frac{1}{15} = 1.0666666666666667
Share
Copied to clipboard
\frac{79}{120}+\frac{105}{120}+\frac{13}{120}-\frac{23}{40}
Least common multiple of 120 and 8 is 120. Convert \frac{79}{120} and \frac{7}{8} to fractions with denominator 120.
\frac{79+105}{120}+\frac{13}{120}-\frac{23}{40}
Since \frac{79}{120} and \frac{105}{120} have the same denominator, add them by adding their numerators.
\frac{184}{120}+\frac{13}{120}-\frac{23}{40}
Add 79 and 105 to get 184.
\frac{184+13}{120}-\frac{23}{40}
Since \frac{184}{120} and \frac{13}{120} have the same denominator, add them by adding their numerators.
\frac{197}{120}-\frac{23}{40}
Add 184 and 13 to get 197.
\frac{197}{120}-\frac{69}{120}
Least common multiple of 120 and 40 is 120. Convert \frac{197}{120} and \frac{23}{40} to fractions with denominator 120.
\frac{197-69}{120}
Since \frac{197}{120} and \frac{69}{120} have the same denominator, subtract them by subtracting their numerators.
\frac{128}{120}
Subtract 69 from 197 to get 128.
\frac{16}{15}
Reduce the fraction \frac{128}{120} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}