( \frac { 7 x + 5 } { 12 } - \frac { 3 x + 3 } { 4 } = \frac { 1 } { 2 } )
Solve for x
x=-5
Graph
Share
Copied to clipboard
7x+5-3\left(3x+3\right)=6
Multiply both sides of the equation by 12, the least common multiple of 12,4,2.
7x+5-9x-9=6
Use the distributive property to multiply -3 by 3x+3.
-2x+5-9=6
Combine 7x and -9x to get -2x.
-2x-4=6
Subtract 9 from 5 to get -4.
-2x=6+4
Add 4 to both sides.
-2x=10
Add 6 and 4 to get 10.
x=\frac{10}{-2}
Divide both sides by -2.
x=-5
Divide 10 by -2 to get -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}