Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2+x\right)^{-1}\left(x^{2}-9\right)\left(\frac{7x+1}{x^{2}-9}+\frac{x}{x-3}-\frac{3}{x+3}\right)=x+5
Multiply both sides of the equation by 3.
\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\left(\frac{7x+1}{x^{2}-9}+\frac{x}{x-3}-\frac{3}{x+3}\right)=x+5
Use the distributive property to multiply \left(2+x\right)^{-1} by x^{2}-9.
\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\left(\frac{7x+1}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x-3}-\frac{3}{x+3}\right)=x+5
Factor x^{2}-9.
\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\left(\frac{7x+1}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3}{x+3}\right)=x+5
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right) and x-3 is \left(x-3\right)\left(x+3\right). Multiply \frac{x}{x-3} times \frac{x+3}{x+3}.
\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\left(\frac{7x+1+x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3}{x+3}\right)=x+5
Since \frac{7x+1}{\left(x-3\right)\left(x+3\right)} and \frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\left(\frac{7x+1+x^{2}+3x}{\left(x-3\right)\left(x+3\right)}-\frac{3}{x+3}\right)=x+5
Do the multiplications in 7x+1+x\left(x+3\right).
\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\left(\frac{10x+1+x^{2}}{\left(x-3\right)\left(x+3\right)}-\frac{3}{x+3}\right)=x+5
Combine like terms in 7x+1+x^{2}+3x.
\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\left(\frac{10x+1+x^{2}}{\left(x-3\right)\left(x+3\right)}-\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right)=x+5
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right) and x+3 is \left(x-3\right)\left(x+3\right). Multiply \frac{3}{x+3} times \frac{x-3}{x-3}.
\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\times \frac{10x+1+x^{2}-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=x+5
Since \frac{10x+1+x^{2}}{\left(x-3\right)\left(x+3\right)} and \frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\times \frac{10x+1+x^{2}-3x+9}{\left(x-3\right)\left(x+3\right)}=x+5
Do the multiplications in 10x+1+x^{2}-3\left(x-3\right).
\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\times \frac{7x+10+x^{2}}{\left(x-3\right)\left(x+3\right)}=x+5
Combine like terms in 10x+1+x^{2}-3x+9.
\frac{\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\left(7x+10+x^{2}\right)}{\left(x-3\right)\left(x+3\right)}=x+5
Express \left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\times \frac{7x+10+x^{2}}{\left(x-3\right)\left(x+3\right)} as a single fraction.
\frac{7\left(2+x\right)^{-1}x^{3}+\left(2+x\right)^{-1}x^{2}+\left(2+x\right)^{-1}x^{4}-63\left(2+x\right)^{-1}x-90\left(2+x\right)^{-1}}{\left(x-3\right)\left(x+3\right)}=x+5
Use the distributive property to multiply \left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1} by 7x+10+x^{2} and combine like terms.
\frac{7\left(2+x\right)^{-1}x^{3}+\left(2+x\right)^{-1}x^{2}+\left(2+x\right)^{-1}x^{4}-63\left(2+x\right)^{-1}x-90\left(2+x\right)^{-1}}{x^{2}-9}=x+5
Consider \left(x-3\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
\frac{7\left(2+x\right)^{-1}x^{3}+\left(2+x\right)^{-1}x^{2}+\left(2+x\right)^{-1}x^{4}-63\left(2+x\right)^{-1}x-90\left(2+x\right)^{-1}}{x^{2}-9}-x=5
Subtract x from both sides.
\frac{7\left(2+x\right)^{-1}x^{3}+\left(2+x\right)^{-1}x^{2}+\left(2+x\right)^{-1}x^{4}-63\left(2+x\right)^{-1}x-90\left(2+x\right)^{-1}}{x^{2}-9}-x-5=0
Subtract 5 from both sides.
7\left(2+x\right)^{-1}x^{3}+\left(2+x\right)^{-1}x^{2}+\left(2+x\right)^{-1}x^{4}-63\left(2+x\right)^{-1}x-90\left(2+x\right)^{-1}-x\left(x-3\right)\left(x+3\right)+\left(x-3\right)\left(x+3\right)\left(-5\right)=0
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right).
-x\left(x-3\right)\left(x+3\right)+\frac{1}{x+2}x^{4}+7\times \frac{1}{x+2}x^{3}-5\left(x-3\right)\left(x+3\right)+\frac{1}{x+2}x^{2}-63\times \frac{1}{x+2}x-90\times \frac{1}{x+2}=0
Reorder the terms.
-x\left(x-3\right)\left(x+3\right)\left(x+2\right)+1x^{4}+7\times 1x^{3}-5\left(x-3\right)\left(x+3\right)\left(x+2\right)+1x^{2}-63x-90=0
Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by x+2.
-x\left(x-3\right)\left(x+3\right)\left(x+2\right)+1x^{4}+7x^{3}-5\left(x-3\right)\left(x+3\right)\left(x+2\right)+1x^{2}-63x-90=0
Do the multiplications.
\left(-x^{2}+3x\right)\left(x+3\right)\left(x+2\right)+1x^{4}+7x^{3}-5\left(x-3\right)\left(x+3\right)\left(x+2\right)+1x^{2}-63x-90=0
Use the distributive property to multiply -x by x-3.
\left(-x^{3}+9x\right)\left(x+2\right)+1x^{4}+7x^{3}-5\left(x-3\right)\left(x+3\right)\left(x+2\right)+1x^{2}-63x-90=0
Use the distributive property to multiply -x^{2}+3x by x+3 and combine like terms.
-x^{4}-2x^{3}+9x^{2}+18x+1x^{4}+7x^{3}-5\left(x-3\right)\left(x+3\right)\left(x+2\right)+1x^{2}-63x-90=0
Use the distributive property to multiply -x^{3}+9x by x+2.
-2x^{3}+9x^{2}+18x+7x^{3}-5\left(x-3\right)\left(x+3\right)\left(x+2\right)+1x^{2}-63x-90=0
Combine -x^{4} and 1x^{4} to get 0.
5x^{3}+9x^{2}+18x-5\left(x-3\right)\left(x+3\right)\left(x+2\right)+1x^{2}-63x-90=0
Combine -2x^{3} and 7x^{3} to get 5x^{3}.
5x^{3}+9x^{2}+18x+\left(-5x+15\right)\left(x+3\right)\left(x+2\right)+1x^{2}-63x-90=0
Use the distributive property to multiply -5 by x-3.
5x^{3}+9x^{2}+18x+\left(-5x^{2}+45\right)\left(x+2\right)+1x^{2}-63x-90=0
Use the distributive property to multiply -5x+15 by x+3 and combine like terms.
5x^{3}+9x^{2}+18x-5x^{3}-10x^{2}+45x+90+1x^{2}-63x-90=0
Use the distributive property to multiply -5x^{2}+45 by x+2.
9x^{2}+18x-10x^{2}+45x+90+1x^{2}-63x-90=0
Combine 5x^{3} and -5x^{3} to get 0.
-x^{2}+18x+45x+90+1x^{2}-63x-90=0
Combine 9x^{2} and -10x^{2} to get -x^{2}.
-x^{2}+63x+90+1x^{2}-63x-90=0
Combine 18x and 45x to get 63x.
63x+90-63x-90=0
Combine -x^{2} and 1x^{2} to get 0.
90-90=0
Combine 63x and -63x to get 0.
0=0
Subtract 90 from 90 to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{C}
This is true for any x.
x\in \mathrm{C}\setminus -3,-2,3
Variable x cannot be equal to any of the values -2,-3,3.
\left(2+x\right)^{-1}\left(x^{2}-9\right)\left(\frac{7x+1}{x^{2}-9}+\frac{x}{x-3}-\frac{3}{x+3}\right)=x+5
Multiply both sides of the equation by 3.
\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\left(\frac{7x+1}{x^{2}-9}+\frac{x}{x-3}-\frac{3}{x+3}\right)=x+5
Use the distributive property to multiply \left(2+x\right)^{-1} by x^{2}-9.
\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\left(\frac{7x+1}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x-3}-\frac{3}{x+3}\right)=x+5
Factor x^{2}-9.
\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\left(\frac{7x+1}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3}{x+3}\right)=x+5
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right) and x-3 is \left(x-3\right)\left(x+3\right). Multiply \frac{x}{x-3} times \frac{x+3}{x+3}.
\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\left(\frac{7x+1+x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3}{x+3}\right)=x+5
Since \frac{7x+1}{\left(x-3\right)\left(x+3\right)} and \frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\left(\frac{7x+1+x^{2}+3x}{\left(x-3\right)\left(x+3\right)}-\frac{3}{x+3}\right)=x+5
Do the multiplications in 7x+1+x\left(x+3\right).
\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\left(\frac{10x+1+x^{2}}{\left(x-3\right)\left(x+3\right)}-\frac{3}{x+3}\right)=x+5
Combine like terms in 7x+1+x^{2}+3x.
\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\left(\frac{10x+1+x^{2}}{\left(x-3\right)\left(x+3\right)}-\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right)=x+5
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right) and x+3 is \left(x-3\right)\left(x+3\right). Multiply \frac{3}{x+3} times \frac{x-3}{x-3}.
\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\times \frac{10x+1+x^{2}-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=x+5
Since \frac{10x+1+x^{2}}{\left(x-3\right)\left(x+3\right)} and \frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\times \frac{10x+1+x^{2}-3x+9}{\left(x-3\right)\left(x+3\right)}=x+5
Do the multiplications in 10x+1+x^{2}-3\left(x-3\right).
\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\times \frac{7x+10+x^{2}}{\left(x-3\right)\left(x+3\right)}=x+5
Combine like terms in 10x+1+x^{2}-3x+9.
\frac{\left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\left(7x+10+x^{2}\right)}{\left(x-3\right)\left(x+3\right)}=x+5
Express \left(\left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1}\right)\times \frac{7x+10+x^{2}}{\left(x-3\right)\left(x+3\right)} as a single fraction.
\frac{7\left(2+x\right)^{-1}x^{3}+\left(2+x\right)^{-1}x^{2}+\left(2+x\right)^{-1}x^{4}-63\left(2+x\right)^{-1}x-90\left(2+x\right)^{-1}}{\left(x-3\right)\left(x+3\right)}=x+5
Use the distributive property to multiply \left(2+x\right)^{-1}x^{2}-9\left(2+x\right)^{-1} by 7x+10+x^{2} and combine like terms.
\frac{7\left(2+x\right)^{-1}x^{3}+\left(2+x\right)^{-1}x^{2}+\left(2+x\right)^{-1}x^{4}-63\left(2+x\right)^{-1}x-90\left(2+x\right)^{-1}}{x^{2}-9}=x+5
Consider \left(x-3\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
\frac{7\left(2+x\right)^{-1}x^{3}+\left(2+x\right)^{-1}x^{2}+\left(2+x\right)^{-1}x^{4}-63\left(2+x\right)^{-1}x-90\left(2+x\right)^{-1}}{x^{2}-9}-x=5
Subtract x from both sides.
\frac{7\left(2+x\right)^{-1}x^{3}+\left(2+x\right)^{-1}x^{2}+\left(2+x\right)^{-1}x^{4}-63\left(2+x\right)^{-1}x-90\left(2+x\right)^{-1}}{x^{2}-9}-x-5=0
Subtract 5 from both sides.
7\left(2+x\right)^{-1}x^{3}+\left(2+x\right)^{-1}x^{2}+\left(2+x\right)^{-1}x^{4}-63\left(2+x\right)^{-1}x-90\left(2+x\right)^{-1}-x\left(x-3\right)\left(x+3\right)+\left(x-3\right)\left(x+3\right)\left(-5\right)=0
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right).
-x\left(x-3\right)\left(x+3\right)+\frac{1}{x+2}x^{4}+7\times \frac{1}{x+2}x^{3}-5\left(x-3\right)\left(x+3\right)+\frac{1}{x+2}x^{2}-63\times \frac{1}{x+2}x-90\times \frac{1}{x+2}=0
Reorder the terms.
-x\left(x-3\right)\left(x+3\right)\left(x+2\right)+1x^{4}+7\times 1x^{3}-5\left(x-3\right)\left(x+3\right)\left(x+2\right)+1x^{2}-63x-90=0
Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by x+2.
-x\left(x-3\right)\left(x+3\right)\left(x+2\right)+1x^{4}+7x^{3}-5\left(x-3\right)\left(x+3\right)\left(x+2\right)+1x^{2}-63x-90=0
Do the multiplications.
\left(-x^{2}+3x\right)\left(x+3\right)\left(x+2\right)+1x^{4}+7x^{3}-5\left(x-3\right)\left(x+3\right)\left(x+2\right)+1x^{2}-63x-90=0
Use the distributive property to multiply -x by x-3.
\left(-x^{3}+9x\right)\left(x+2\right)+1x^{4}+7x^{3}-5\left(x-3\right)\left(x+3\right)\left(x+2\right)+1x^{2}-63x-90=0
Use the distributive property to multiply -x^{2}+3x by x+3 and combine like terms.
-x^{4}-2x^{3}+9x^{2}+18x+1x^{4}+7x^{3}-5\left(x-3\right)\left(x+3\right)\left(x+2\right)+1x^{2}-63x-90=0
Use the distributive property to multiply -x^{3}+9x by x+2.
-2x^{3}+9x^{2}+18x+7x^{3}-5\left(x-3\right)\left(x+3\right)\left(x+2\right)+1x^{2}-63x-90=0
Combine -x^{4} and 1x^{4} to get 0.
5x^{3}+9x^{2}+18x-5\left(x-3\right)\left(x+3\right)\left(x+2\right)+1x^{2}-63x-90=0
Combine -2x^{3} and 7x^{3} to get 5x^{3}.
5x^{3}+9x^{2}+18x+\left(-5x+15\right)\left(x+3\right)\left(x+2\right)+1x^{2}-63x-90=0
Use the distributive property to multiply -5 by x-3.
5x^{3}+9x^{2}+18x+\left(-5x^{2}+45\right)\left(x+2\right)+1x^{2}-63x-90=0
Use the distributive property to multiply -5x+15 by x+3 and combine like terms.
5x^{3}+9x^{2}+18x-5x^{3}-10x^{2}+45x+90+1x^{2}-63x-90=0
Use the distributive property to multiply -5x^{2}+45 by x+2.
9x^{2}+18x-10x^{2}+45x+90+1x^{2}-63x-90=0
Combine 5x^{3} and -5x^{3} to get 0.
-x^{2}+18x+45x+90+1x^{2}-63x-90=0
Combine 9x^{2} and -10x^{2} to get -x^{2}.
-x^{2}+63x+90+1x^{2}-63x-90=0
Combine 18x and 45x to get 63x.
63x+90-63x-90=0
Combine -x^{2} and 1x^{2} to get 0.
90-90=0
Combine 63x and -63x to get 0.
0=0
Subtract 90 from 90 to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{R}
This is true for any x.
x\in \mathrm{R}\setminus -3,-2,3
Variable x cannot be equal to any of the values -2,-3,3.