Evaluate
-\frac{25}{3}\approx -8.333333333
Factor
-\frac{25}{3} = -8\frac{1}{3} = -8.333333333333334
Share
Copied to clipboard
\frac{\frac{21}{24}-\frac{14}{24}}{-\frac{7}{8}}+\left(-2\right)^{3}
Least common multiple of 8 and 12 is 24. Convert \frac{7}{8} and \frac{7}{12} to fractions with denominator 24.
\frac{\frac{21-14}{24}}{-\frac{7}{8}}+\left(-2\right)^{3}
Since \frac{21}{24} and \frac{14}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7}{24}}{-\frac{7}{8}}+\left(-2\right)^{3}
Subtract 14 from 21 to get 7.
\frac{7}{24}\left(-\frac{8}{7}\right)+\left(-2\right)^{3}
Divide \frac{7}{24} by -\frac{7}{8} by multiplying \frac{7}{24} by the reciprocal of -\frac{7}{8}.
\frac{7\left(-8\right)}{24\times 7}+\left(-2\right)^{3}
Multiply \frac{7}{24} times -\frac{8}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{-8}{24}+\left(-2\right)^{3}
Cancel out 7 in both numerator and denominator.
-\frac{1}{3}+\left(-2\right)^{3}
Reduce the fraction \frac{-8}{24} to lowest terms by extracting and canceling out 8.
-\frac{1}{3}-8
Calculate -2 to the power of 3 and get -8.
-\frac{1}{3}-\frac{24}{3}
Convert 8 to fraction \frac{24}{3}.
\frac{-1-24}{3}
Since -\frac{1}{3} and \frac{24}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{25}{3}
Subtract 24 from -1 to get -25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}