Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{7}{8}\times \frac{1}{14}+\frac{3}{2}=\frac{100}{49}xx
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{7\times 1}{8\times 14}+\frac{3}{2}=\frac{100}{49}xx
Multiply \frac{7}{8} times \frac{1}{14} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{112}+\frac{3}{2}=\frac{100}{49}xx
Do the multiplications in the fraction \frac{7\times 1}{8\times 14}.
\frac{1}{16}+\frac{3}{2}=\frac{100}{49}xx
Reduce the fraction \frac{7}{112} to lowest terms by extracting and canceling out 7.
\frac{1}{16}+\frac{24}{16}=\frac{100}{49}xx
Least common multiple of 16 and 2 is 16. Convert \frac{1}{16} and \frac{3}{2} to fractions with denominator 16.
\frac{1+24}{16}=\frac{100}{49}xx
Since \frac{1}{16} and \frac{24}{16} have the same denominator, add them by adding their numerators.
\frac{25}{16}=\frac{100}{49}xx
Add 1 and 24 to get 25.
\frac{25}{16}=\frac{100}{49}x^{2}
Multiply x and x to get x^{2}.
\frac{100}{49}x^{2}=\frac{25}{16}
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{25}{16}\times \frac{49}{100}
Multiply both sides by \frac{49}{100}, the reciprocal of \frac{100}{49}.
x^{2}=\frac{25\times 49}{16\times 100}
Multiply \frac{25}{16} times \frac{49}{100} by multiplying numerator times numerator and denominator times denominator.
x^{2}=\frac{1225}{1600}
Do the multiplications in the fraction \frac{25\times 49}{16\times 100}.
x^{2}=\frac{49}{64}
Reduce the fraction \frac{1225}{1600} to lowest terms by extracting and canceling out 25.
x=\frac{7}{8} x=-\frac{7}{8}
Take the square root of both sides of the equation.
\frac{7}{8}\times \frac{1}{14}+\frac{3}{2}=\frac{100}{49}xx
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{7\times 1}{8\times 14}+\frac{3}{2}=\frac{100}{49}xx
Multiply \frac{7}{8} times \frac{1}{14} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{112}+\frac{3}{2}=\frac{100}{49}xx
Do the multiplications in the fraction \frac{7\times 1}{8\times 14}.
\frac{1}{16}+\frac{3}{2}=\frac{100}{49}xx
Reduce the fraction \frac{7}{112} to lowest terms by extracting and canceling out 7.
\frac{1}{16}+\frac{24}{16}=\frac{100}{49}xx
Least common multiple of 16 and 2 is 16. Convert \frac{1}{16} and \frac{3}{2} to fractions with denominator 16.
\frac{1+24}{16}=\frac{100}{49}xx
Since \frac{1}{16} and \frac{24}{16} have the same denominator, add them by adding their numerators.
\frac{25}{16}=\frac{100}{49}xx
Add 1 and 24 to get 25.
\frac{25}{16}=\frac{100}{49}x^{2}
Multiply x and x to get x^{2}.
\frac{100}{49}x^{2}=\frac{25}{16}
Swap sides so that all variable terms are on the left hand side.
\frac{100}{49}x^{2}-\frac{25}{16}=0
Subtract \frac{25}{16} from both sides.
x=\frac{0±\sqrt{0^{2}-4\times \frac{100}{49}\left(-\frac{25}{16}\right)}}{2\times \frac{100}{49}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{100}{49} for a, 0 for b, and -\frac{25}{16} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{100}{49}\left(-\frac{25}{16}\right)}}{2\times \frac{100}{49}}
Square 0.
x=\frac{0±\sqrt{-\frac{400}{49}\left(-\frac{25}{16}\right)}}{2\times \frac{100}{49}}
Multiply -4 times \frac{100}{49}.
x=\frac{0±\sqrt{\frac{625}{49}}}{2\times \frac{100}{49}}
Multiply -\frac{400}{49} times -\frac{25}{16} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{0±\frac{25}{7}}{2\times \frac{100}{49}}
Take the square root of \frac{625}{49}.
x=\frac{0±\frac{25}{7}}{\frac{200}{49}}
Multiply 2 times \frac{100}{49}.
x=\frac{7}{8}
Now solve the equation x=\frac{0±\frac{25}{7}}{\frac{200}{49}} when ± is plus.
x=-\frac{7}{8}
Now solve the equation x=\frac{0±\frac{25}{7}}{\frac{200}{49}} when ± is minus.
x=\frac{7}{8} x=-\frac{7}{8}
The equation is now solved.