Evaluate
\frac{209}{24}\approx 8.708333333
Factor
\frac{11 \cdot 19}{3 \cdot 2 ^ {3}} = 8\frac{17}{24} = 8.708333333333334
Share
Copied to clipboard
\frac{\frac{7}{8}+\frac{1}{4}-\frac{1}{3}}{\frac{1}{11}}
Convert decimal number 0.25 to fraction \frac{25}{100}. Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{\frac{7}{8}+\frac{2}{8}-\frac{1}{3}}{\frac{1}{11}}
Least common multiple of 8 and 4 is 8. Convert \frac{7}{8} and \frac{1}{4} to fractions with denominator 8.
\frac{\frac{7+2}{8}-\frac{1}{3}}{\frac{1}{11}}
Since \frac{7}{8} and \frac{2}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{9}{8}-\frac{1}{3}}{\frac{1}{11}}
Add 7 and 2 to get 9.
\frac{\frac{27}{24}-\frac{8}{24}}{\frac{1}{11}}
Least common multiple of 8 and 3 is 24. Convert \frac{9}{8} and \frac{1}{3} to fractions with denominator 24.
\frac{\frac{27-8}{24}}{\frac{1}{11}}
Since \frac{27}{24} and \frac{8}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{19}{24}}{\frac{1}{11}}
Subtract 8 from 27 to get 19.
\frac{19}{24}\times 11
Divide \frac{19}{24} by \frac{1}{11} by multiplying \frac{19}{24} by the reciprocal of \frac{1}{11}.
\frac{19\times 11}{24}
Express \frac{19}{24}\times 11 as a single fraction.
\frac{209}{24}
Multiply 19 and 11 to get 209.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}