Evaluate
\frac{95}{196}\approx 0.484693878
Factor
\frac{5 \cdot 19}{2 ^ {2} \cdot 7 ^ {2}} = 0.4846938775510204
Share
Copied to clipboard
\frac{\frac{1}{\frac{7}{6}}\times \left(\frac{7}{6}\right)^{3}}{\left(\frac{7}{6}\right)^{4}}-\frac{\left(\frac{1}{2}\right)^{6}}{\left(\frac{1}{2}\right)^{5}}\times \frac{1}{2}
Divide \frac{7}{6} by \frac{7}{6} to get 1.
\frac{\frac{1}{\frac{7}{6}}\times \left(\frac{7}{6}\right)^{3}}{\left(\frac{7}{6}\right)^{4}}-\left(\frac{1}{2}\right)^{1}\times \frac{1}{2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 5 from 6 to get 1.
\frac{\frac{1}{\frac{7}{6}}\times \left(\frac{7}{6}\right)^{3}}{\left(\frac{7}{6}\right)^{4}}-\left(\frac{1}{2}\right)^{2}
To multiply powers of the same base, add their exponents. Add 1 and 1 to get 2.
\frac{1\times \frac{6}{7}\times \left(\frac{7}{6}\right)^{3}}{\left(\frac{7}{6}\right)^{4}}-\left(\frac{1}{2}\right)^{2}
Divide 1 by \frac{7}{6} by multiplying 1 by the reciprocal of \frac{7}{6}.
\frac{\frac{6}{7}\times \left(\frac{7}{6}\right)^{3}}{\left(\frac{7}{6}\right)^{4}}-\left(\frac{1}{2}\right)^{2}
Multiply 1 and \frac{6}{7} to get \frac{6}{7}.
\frac{\frac{6}{7}\times \frac{343}{216}}{\left(\frac{7}{6}\right)^{4}}-\left(\frac{1}{2}\right)^{2}
Calculate \frac{7}{6} to the power of 3 and get \frac{343}{216}.
\frac{\frac{6\times 343}{7\times 216}}{\left(\frac{7}{6}\right)^{4}}-\left(\frac{1}{2}\right)^{2}
Multiply \frac{6}{7} times \frac{343}{216} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{2058}{1512}}{\left(\frac{7}{6}\right)^{4}}-\left(\frac{1}{2}\right)^{2}
Do the multiplications in the fraction \frac{6\times 343}{7\times 216}.
\frac{\frac{49}{36}}{\left(\frac{7}{6}\right)^{4}}-\left(\frac{1}{2}\right)^{2}
Reduce the fraction \frac{2058}{1512} to lowest terms by extracting and canceling out 42.
\frac{\frac{49}{36}}{\frac{2401}{1296}}-\left(\frac{1}{2}\right)^{2}
Calculate \frac{7}{6} to the power of 4 and get \frac{2401}{1296}.
\frac{49}{36}\times \frac{1296}{2401}-\left(\frac{1}{2}\right)^{2}
Divide \frac{49}{36} by \frac{2401}{1296} by multiplying \frac{49}{36} by the reciprocal of \frac{2401}{1296}.
\frac{49\times 1296}{36\times 2401}-\left(\frac{1}{2}\right)^{2}
Multiply \frac{49}{36} times \frac{1296}{2401} by multiplying numerator times numerator and denominator times denominator.
\frac{63504}{86436}-\left(\frac{1}{2}\right)^{2}
Do the multiplications in the fraction \frac{49\times 1296}{36\times 2401}.
\frac{36}{49}-\left(\frac{1}{2}\right)^{2}
Reduce the fraction \frac{63504}{86436} to lowest terms by extracting and canceling out 1764.
\frac{36}{49}-\frac{1}{4}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{144}{196}-\frac{49}{196}
Least common multiple of 49 and 4 is 196. Convert \frac{36}{49} and \frac{1}{4} to fractions with denominator 196.
\frac{144-49}{196}
Since \frac{144}{196} and \frac{49}{196} have the same denominator, subtract them by subtracting their numerators.
\frac{95}{196}
Subtract 49 from 144 to get 95.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}