Evaluate
\frac{194}{99}\approx 1.95959596
Factor
\frac{2 \cdot 97}{3 ^ {2} \cdot 11} = 1\frac{95}{99} = 1.9595959595959596
Share
Copied to clipboard
\frac{\frac{7}{6}+\frac{27+5}{9}\times \frac{1\times 16+3}{16}}{\frac{1\times 4+7}{4}}
Multiply 3 and 9 to get 27.
\frac{\frac{7}{6}+\frac{32}{9}\times \frac{1\times 16+3}{16}}{\frac{1\times 4+7}{4}}
Add 27 and 5 to get 32.
\frac{\frac{7}{6}+\frac{32}{9}\times \frac{16+3}{16}}{\frac{1\times 4+7}{4}}
Multiply 1 and 16 to get 16.
\frac{\frac{7}{6}+\frac{32}{9}\times \frac{19}{16}}{\frac{1\times 4+7}{4}}
Add 16 and 3 to get 19.
\frac{\frac{7}{6}+\frac{32\times 19}{9\times 16}}{\frac{1\times 4+7}{4}}
Multiply \frac{32}{9} times \frac{19}{16} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{7}{6}+\frac{608}{144}}{\frac{1\times 4+7}{4}}
Do the multiplications in the fraction \frac{32\times 19}{9\times 16}.
\frac{\frac{7}{6}+\frac{38}{9}}{\frac{1\times 4+7}{4}}
Reduce the fraction \frac{608}{144} to lowest terms by extracting and canceling out 16.
\frac{\frac{21}{18}+\frac{76}{18}}{\frac{1\times 4+7}{4}}
Least common multiple of 6 and 9 is 18. Convert \frac{7}{6} and \frac{38}{9} to fractions with denominator 18.
\frac{\frac{21+76}{18}}{\frac{1\times 4+7}{4}}
Since \frac{21}{18} and \frac{76}{18} have the same denominator, add them by adding their numerators.
\frac{\frac{97}{18}}{\frac{1\times 4+7}{4}}
Add 21 and 76 to get 97.
\frac{\frac{97}{18}}{\frac{4+7}{4}}
Multiply 1 and 4 to get 4.
\frac{\frac{97}{18}}{\frac{11}{4}}
Add 4 and 7 to get 11.
\frac{97}{18}\times \frac{4}{11}
Divide \frac{97}{18} by \frac{11}{4} by multiplying \frac{97}{18} by the reciprocal of \frac{11}{4}.
\frac{97\times 4}{18\times 11}
Multiply \frac{97}{18} times \frac{4}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{388}{198}
Do the multiplications in the fraction \frac{97\times 4}{18\times 11}.
\frac{194}{99}
Reduce the fraction \frac{388}{198} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}